Skip to main content
Log in

Understanding Corrosion Inhibition of C38 Steel in HCl Media by Omeprazole: Insights for Experimental and Computational Studies

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The influence of omeprazole on C38 steel corrosion in HCl solutions (1, 3, 5 M) was evaluated by weight loss and electrochemical techniques. Density-functional theory (DFT) and molecular dynamic (MD) simulations were also used. The weight loss experiment shows that the maximum inhibition efficiency achieved a value of 98.36% in the presence of 5 × 10−3 M of omeprazole in molar HCl. Polarization measurements revealed that the inhibitor acted as a mixed type. Impedance spectroscopy measurements illustrated that the resistance to charge transfer increased with the addition of omeprazole concentration in 1, 3 and 5 M of HCl. The SEM micrographs demonstrated applicable protection of the C38 surface after the addition of 5 × 10−3 M of omeprazole for all three studied HCl test solutions. The DFT and MD simulations were used to explain the effect of the molecular structure on the corrosion inhibition efficiency and to simulate the adsorption of omeprazole on C38 surface. The corrosion rates were related to generalized pH expressed by Strehlow acidity function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. M. Tariq, M. Saleem, S. Usmani, I. Ahmed, F.A. Al-shammari, K. Mairaj, Inhibition of mild steel in 1 M HCl by sweet melon peel extract. J. King Saud Univ. Sci. (2019). https://doi.org/10.1016/j.jksus.2019.01.013

    Article  Google Scholar 

  2. P.B. Raja, M. Ismail, S. Ghoreishiamiri, Reviews on corrosion inhibitors: a short view. Chem. Eng. Commun. (2016). https://doi.org/10.1080/00986445.2016.1172485

    Article  Google Scholar 

  3. K. Bouayad, Y. Kandri Rodi, H. Elmsellem, E.H. El Ghadraoui, Y. Ouzidan, I. Abdel-Rahman, H.S. Kusuma, I. Warad, J.T. Mague, E.M. Essassi, B. Hammouti, A. Chetouani, Imidazo[4,5-b]pyridines as a new class of corrosion inhibitors for mild steel: experimental and DFT approach. Moroc. J. Chem. 6, 22–34 (2018)

    CAS  Google Scholar 

  4. G. Karthik, M. Sundaravadivelu, Investigations of the inhibition of copper corrosion in nitric acid solutions by levetiracetam drug. Egypt. J. Pet. (2015). https://doi.org/10.1016/j.ejpe.2015.10.009

    Article  Google Scholar 

  5. L.T. Popoola, Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01143

    Article  Google Scholar 

  6. G. Gece, Drugs: a review of promising novel corrosion inhibitors. Corros. Sci. 53, 3873–3898 (2011). https://doi.org/10.1016/j.corsci.2011.08.006

    Article  CAS  Google Scholar 

  7. S.K. Shukla, M.A. Quraishi, Cefalexin drug: a new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution. Mater. Chem. Phys. 120, 142 (2010). https://doi.org/10.1016/j.matchemphys.2009.10.037

    Article  CAS  Google Scholar 

  8. I. Ahamad, R. Prasad, M.A. Quraishi, Inhibition of mild steel corrosion in acid solution by Pheniramine drug: experimental and theoretical study. Corros. Sci. 52, 3033 (2010). https://doi.org/10.1016/j.corsci.2010.05.022

    Article  CAS  Google Scholar 

  9. A.S. Foud, H.E. Gadow, Glob, streptoquin and septazole: antibiotic drugs as corrosion inhibitors for copper in aqueous solutions. J. Res. Eng. C Chem. Eng. 14, 2 (2014)

    Google Scholar 

  10. A.A. Fadhil, A.A. Khadom, H. Liu, C. Fu, J. Wang, N.A. Fadhil, H.B. Mahood, Corrosion inhibitor of steel in acidic solution: gravimetrical, electrochemical, surface morphology and theoretical simulation. J. Mol. Liq. 276, 503–518 (2019). https://doi.org/10.1016/j.molliq.2018.12.015

    Article  CAS  Google Scholar 

  11. H. So, A. Saxena, D. Prasad, R. Haldhar, Á.S.E.M.Á. Afm, Investigation of corrosion inhibition effect and adsorption activities of achyranthes aspera extract for mild steel in 0.5 M. J. Fail. Anal. Prev. (2018). https://doi.org/10.1007/s11668-018-0491-8

    Article  Google Scholar 

  12. A. Khadraoui, A. Khelifa, M. Hadjmeliani, R. Mehdaoui, K. Hachama, A. Tidu, Z. Azari, Extraction, characterization and anti-corrosion activity of Mentha pulegium oil: weight loss, electrochemical, thermodynamic and surface studies. J. Mol. Liq. 216, 724–731 (2016). https://doi.org/10.1016/j.molliq.2016.02.005

    Article  CAS  Google Scholar 

  13. Q. Hu, Y. Qiu, G. Zhang, X. Guo, Capsella bursa-pastoris extract as an eco-friendly inhibitor on the corrosion of Qδ carbon steels in 1 mol L−1 hydrochloric acid. Chin. J. Chem. Eng. (2015). https://doi.org/10.1016/j.cjche.2015.05.002

    Article  Google Scholar 

  14. F.Z. Bouanis, F. Bentiss, M. Traisnel, C. Jama, Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel: gravimetric and electrochemical results. Electrochim. Acta 54, 2371–2378 (2009). https://doi.org/10.1016/j.electacta.2008.10.068

    Article  CAS  Google Scholar 

  15. Materials studio, revision 6.0 (2013)

  16. B. Delley, From molecules to solids with the DMol 3 approach. J. Chem. Phys. 113, 7756–7764 (2000). https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  17. J.P. Perdew, K. Burke, Y. Wang, Erratum: generalized gradient approximation for the exchange-correlation hole of a many-electron system [Phys. Rev. B 54, 16 533 (1996)]. Phys. Rev. B 57, 14999 (1998). https://doi.org/10.1103/PhysRevB.57.14999

    Article  CAS  Google Scholar 

  18. A. Kokalj, Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochim. Acta 56, 745–755 (2010). https://doi.org/10.1016/j.electacta.2010.09.065

    Article  CAS  Google Scholar 

  19. M.J. Dewar, W. Thiel, Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99, 4899–4907 (1977). https://doi.org/10.1021/ja00457a004

    Article  CAS  Google Scholar 

  20. B. Gómez, N.V. Likhanova, M.A. Dominguez Aguilar, O. Olivares, J.M. Hallen, J.M. Martínez-Magadán, Theoretical study of a new group of corrosion inhibitors. J. Phys. Chem. A 109, 8950–8957 (2005). https://doi.org/10.1021/jp052188k

    Article  CAS  Google Scholar 

  21. N. Kovačević, A. Kokalj, Analysis of molecular electronic structure of imidazole-and benzimidazole-based inhibitors: a simple recipe for qualitative estimation of chemical hardness. Corros. Sci. 53, 909–921 (2011). https://doi.org/10.1016/j.corsci.2010.11.016

    Article  CAS  Google Scholar 

  22. R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988). https://doi.org/10.1021/ic00277a030

    Article  CAS  Google Scholar 

  23. A. Kokalj, On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem. Phys. 393, 1–12 (2012). https://doi.org/10.1016/j.chemphys.2011.10.021

    Article  CAS  Google Scholar 

  24. S.-W. Xie, Z. Liu, G.-C. Han, W. Li, J. Liu, Z. Chen, Molecular dynamics simulation of inhibition mechanism of 3, 5-dibromo salicylaldehyde Schiff’s base. Comput. Theor. Chem. 1063, 50–62 (2015). https://doi.org/10.1016/j.comptc.2015.04.003

    Article  CAS  Google Scholar 

  25. L. El Ghayati, A. Batah, M. Belkhaouda, L. Bammou, R. Salghi, A. Saber, A. Chetouani, M.L. Taha, E.M. Essassi, Experimental and theoretical investigation of 4-methyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one on the corrosion and inhibition behavior of steel in acidic solution. Moroc. J. Chem. 7, 567–579 (2019)

    CAS  Google Scholar 

  26. L. Meng, W.-Y. He, H. Zheng, M. Liu, H. Yan, W. Yan, Z.-D. Chu, K. Bai, R.-F. Dou, Y. Zhang, Strain-induced one-dimensional Landau level quantization in corrugated graphene. Phys. Rev. B. 87, 205405 (2013). https://doi.org/10.1103/PhysRevB.87.205405

    Article  CAS  Google Scholar 

  27. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids: With Applications to Soft Matter (Academic Press, Lon don, 2013)

    Google Scholar 

  28. M. Elfaydy, H. Lgaz, R. Salghi, M. Larouj, S. Jodeh, Investigation of corrosion inhibition mechanism of quinoline derivative on mild steel in 1.0 M HCl solution: experimental, theoretical and Monte Carlo simulation. J. Mater. Environ. Sci. 7, 3193–3210 (2016)

    CAS  Google Scholar 

  29. N. Soltani, N. Tavakkoli, M. Khayatkashani, M. Reza, Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves. Corros. Sci. 62, 122–135 (2012). https://doi.org/10.1016/j.corsci.2012.05.003

    Article  CAS  Google Scholar 

  30. C. Machado, S.F. Fagundes, N. Escarpini, T. Shewry, D.M. Rocha, R. Garrett, R. Moreira, G. Muricy, A. Leda, E. Ariel, Ircinia strobilina crude extract as corrosion inhibitor for mild steel in acid medium. Electrochim. Acta 312, 137–148 (2019). https://doi.org/10.1016/j.electacta.2019.04.148

    Article  CAS  Google Scholar 

  31. A. Maxime, C. Florent, R. Nadine, M. Traisnel, C. Roos, M. Lebrini, Enhanced corrosion resistance of mild steel in 1 M hydrochloric acid solution by alkaloids extract from Aniba rosaeodora plant: Electrochemical, phytochemical and XPS studies. Electrochim. Acta (2013). https://doi.org/10.1016/j.electacta.2013.12.023

    Article  Google Scholar 

  32. M. Messali, H. Lgaz, R. Dassanayake, R. Salghi, S. Jodeh, N. Abidi, O. Hamed, Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: electrochemical, Surface, DFT and MD simulations studies. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.05.081

    Article  Google Scholar 

  33. R.J. Chin, K. Nobe, Electrodissolution kinetics of iron in chloride solutions: III acidic solutions. J. Electrochem. Soc. 119, 1457 (1972). https://doi.org/10.1149/1.2404023

    Article  CAS  Google Scholar 

  34. M. Bartos, N. Hackerman, A study of inhibition action of propargyl alcohol during anodic dissolution of iron in hydrochloric acid. J. Electrochem. Soc. 139, 3428 (1992). https://doi.org/10.1149/1.2069095

    Article  CAS  Google Scholar 

  35. D.R. MacFarlane, S.I. Smedley, The dissolution mechanism of iron in chloride solutions. J. Electrochem. Soc. 133, 2240 (1986). https://doi.org/10.1149/1.2108381

    Article  CAS  Google Scholar 

  36. J.O’.M. Bockris, D. Drazic, R. Despic, The electrode kinetics of the deposition and dissolution of iron. Electrochim. Acta 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1

    Article  CAS  Google Scholar 

  37. E.J. Kelly, The active iron electrode. I. Iron dissolution and hydrogen evolution reaction in acidic sulfate solutions. J. Electrochem. Soc. 112, 124 (1965)

    Article  CAS  Google Scholar 

  38. S. Cao, D. Liu, H. Ding, J. Wang, H. Lu, J. Gui, Task-specific ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: an experimental and theoretical study. Corros. Sci. 153, 301–313 (2019). https://doi.org/10.1016/j.corsci.2019.03.035

    Article  CAS  Google Scholar 

  39. Q.H. Zhang, B.S. Hou, Y.Y. Li, G.Y. Zhu, H.F. Liu, G.A. Zhang, Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution. Case Stud. Fire Saf. (2019). https://doi.org/10.1016/j.corsci.2019.108346

    Article  Google Scholar 

  40. I.B. Onyeachu, I. Bassey, A.A. Sorour, M.I. Abdul-rashid, Green corrosion inhibitor for oil field application I: electrochemical assessment of 2- (2-pyridyl) benzimidazole for API X60 steel under sweet environment in NACE brine ID196. Corros. Sci. 150, 183–193 (2019). https://doi.org/10.1016/j.corsci.2019.02.010

    Article  CAS  Google Scholar 

  41. R. Sadeghi, M. Amirnasr, S. Meghdadi, M. Talebian, Carboxamide derivatives as new corrosion inhibitors for mild steel protection in hydrochloric acid solution. Corros. Sci. 151, 190–197 (2019). https://doi.org/10.1016/j.corsci.2019.02.019

    Article  CAS  Google Scholar 

  42. Y. Ye, D. Yang, H. Chen, S. Guo, Q. Yang, L. Chen, H. Zhao, L. Wang, A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121019

    Article  Google Scholar 

  43. S. Martinez, M. Metikos-Hukovic, A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors. J. Appl. Electrochem. 33, 1137 (2003). https://doi.org/10.1023/B:JACH.0000003851.82985.5e

    Article  CAS  Google Scholar 

  44. X. Wu, H. Ma, S. Chen, Z. Xu, A. Sui, General equivalent circuits for faradaic electrode processes under electrochemical reaction control. J. Electrochem. Soc. 146, 1847 (1999). https://doi.org/10.1149/1.1391854

    Article  CAS  Google Scholar 

  45. H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, L. Niu, The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros. Sci. 42, 1669 (2000). https://doi.org/10.1016/S0010-938X(00)00003-2

    Article  CAS  Google Scholar 

  46. A.O. Yüce, B.D. Mert, G. Kardaş, B. Yazıcı, Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corros. Sci. 83, 310–316 (2014). https://doi.org/10.1016/j.corsci.2014.02.029

    Article  CAS  Google Scholar 

  47. A. Chaouiki, H. Lgaz, S. Zehra, R. Salghi, I.-M. Chung, Y. El Aoufir, K.S. Bhat, I.H. Ali, S.L. Gaonkar, M.I. Khan, Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl: electrochemical, DFT, and molecular dynamic simulation studies. J. Adhes. Sci. Technol. 33, 921–944 (2019). https://doi.org/10.1080/01694243.2018.1554764

    Article  CAS  Google Scholar 

  48. I. Merimi, Y. El Ouadi, K.R. Ansari, H. Oudda, B. Hammouti, M.A. Quraishi, F.F. Al-blewi, N. Rezki, M.R. Aouad, M. Messali, Adsorption and corrosion inhibition of mild steel by ((Z)-4-((2,4-dihydroxybenzylidene)amino)-5-methy-2,4 dihydro-3H-1,2,4-triazole-3-thione) in 1 M HCl: experimental and computational study. J. Anal. Bioanal. Electrochem. 9, 640–659 (2017). https://doi.org/10.1016/j.matpr.2019.04.056

    Article  CAS  Google Scholar 

  49. A. Chaouiki, H. Lgaz, R. Salghi, M. Chafiq, H. Oudda, K. Bhat, I. Cretescu, I. Ali, R. Marzouki, I. Chung, Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: experimental results and molecular-level insights. Colloids Surf. Physicochem. Eng. Asp. 588, 124366 (2020). https://doi.org/10.1016/j.colsurfa.2019.124366

    Article  CAS  Google Scholar 

  50. B. Chugh, A.K. Singh, A. Chaouiki, R. Salghi, S. Thakur, B. Pani, A comprehensive study about anti-corrosion behaviour of pyrazine carbohydrazide: gravimetric, electrochemical, surface and theoretical study. J. Mol. Liq. 299, 112160 (2020). https://doi.org/10.1016/j.molliq.2019.112160

    Article  CAS  Google Scholar 

  51. I.B. Obot, E.E. Ebenso, M.M. Kabanda, Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: experimental and theoretical investigation. J. Environ. Chem. Eng. 1, 431–439 (2013). https://doi.org/10.1016/j.jece.2013.06.007

    Article  CAS  Google Scholar 

  52. I. Obot, N. Obi-Egbedi, E. Ebenso, A. Afolabi, E. Oguzie, Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl) oxazolo [5, 4-f][1, 10] phenanthroline on mild steel. Res. Chem. Intermed. 39, 1927–1948 (2013). https://doi.org/10.1007/s11164-012-0726-3

    Article  CAS  Google Scholar 

  53. H. Lgaz, R. Salghi, A. Chaouiki, Shubhalaxmi, S. Jodeh, K. Subrahmanya Bhat, Pyrazoline derivatives as possible corrosion inhibitors for mild steel in acidic media: a combined experimental and theoretical approach. Cogent Eng. 5, 1441585 (2018). https://doi.org/10.1080/23311916.2018.1441585

    Article  Google Scholar 

  54. P. Dohare, M. Quraishi, C. Verma, H. Lgaz, R. Salghi, E. Ebenso, Ultrasound induced green synthesis of pyrazolo-pyridines as novel corrosion inhibitors useful for industrial pickling process: experimental and theoretical approach. Results Phys. 13, 102–344 (2019). https://doi.org/10.1016/j.rinp.2019.102344

    Article  Google Scholar 

  55. F. El-Hajjaji, I. Merimi, M. Messali, R.J. Obaid, R. Salim, M. Taleb, B. Hammouti, Experimental and quantum studies of newly synthesized pyridazinium derivatives on mild steel in hydrochloric acid medium. J. Mater. Today: Proc. 13, 822–831 (2019). https://doi.org/10.1016/j.matpr.2019.04.045

    Article  CAS  Google Scholar 

  56. R.G. Sundaram, M.T.G. Vengatesh, Surface protection and morphological study of copper by green corrosion inhibitor: 8QSC in HNO3 medium. J. Fail. Anal. Prev. (2018). https://doi.org/10.1007/s11668-018-0506-5

    Article  Google Scholar 

  57. H. Strehlow, in The Chemistry of Non-aqueous Solvents, vol. 1, ed. J.J. Lagowsky (Academic Press, New York, 1966) p. 129

  58. D. Doudou Babale, R. Wandji, J. Bessiere, Concentrated hydrochloric acid media: acid-base, oxidation-reduction, and solvation properties. J. Chem. Eng. Data 35(3), 345–347 (1990). https://doi.org/10.1021/je00061a033

    Article  Google Scholar 

  59. B. Hammouti, A. Benayada, Electrochemical sensor in situ control of acidity level of concentrated HCl solutions. Mor. J. Chem. 8(3), 573–580 (2020)

    CAS  Google Scholar 

  60. M. Elouafi, Y. Abed, B. Hammouti, S. Kertit, Effect of acidity level Ro(H) on the corrosion of steel in concentrated HCl solutions. Ann. Chim. Sci. Mater. 26, 79 (2001)

    Article  CAS  Google Scholar 

  61. B. Hammouti, K. Bekkouche, S. Kertit, Corrosion of steel in isoacidic 5.5 M H3PO4 solutions. Bull. Electrochem. 14, 49–51 (1998)

    CAS  Google Scholar 

  62. M. Benabdellah, B. Hammouti, K.F. Khaled, Kinetic investigation of C38 steel corrosion in concentrated perchloric acid solutions. Mater. Chem. Phys. 120, 61–64 (2010). https://doi.org/10.1016/j.matchemphys.2009.10.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the help and support of the fellow scientists and colleagues that were involved in this work.

Funding

The authors declare that no funding was awarded to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najoua Labjar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossam, K., Bouhlal, F., Hermouche, L. et al. Understanding Corrosion Inhibition of C38 Steel in HCl Media by Omeprazole: Insights for Experimental and Computational Studies. J Fail. Anal. and Preven. 21, 213–227 (2021). https://doi.org/10.1007/s11668-020-01042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-01042-1

Keywords

Navigation