Skip to main content
Log in

An Experimental Analysis for Damage Monitoring in Glass Fiber/Epoxy Composites During Fatigue Tests by Acoustic Emission

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

As a non-destructive technique, Acoustic emission (AE) can be employed to detect the damage inside the material passively and then locate the damage source. However, fatigue loading poses challenges to AE signal acquisition and processing. In this paper, AE monitoring is performed on glass fiber/epoxy composite laminates under fatigue loads. Due to the intrinsic noise, wavelet packet decomposition is used for noise elimination. Results show that the noise components in original AE signals can be effectively eliminated by the wavelet analysis. Based on the difference of the arrival times, the line positioning method is shown to locate AE sources appearing in the laminates successfully. The peak frequency characteristic of each AE signal is utilized for damage mode classification. The fracture of the laminate is governed by delamination and fiber/breakage, followed by fiber/matrix interface debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Beganovic, D. Söffker, Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: an overview and outlook concerning actual methods, tools, and obtained results. Renew. Sustain. Energy Rev. 64, 68–83 (2016)

    Article  Google Scholar 

  2. R. Yang, Y. He, H. Zhang, Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renew. Sustain. Energy Rev. 60, 1225–1250 (2016)

    Article  CAS  Google Scholar 

  3. D. Li, S.C.M. Ho, G. Song, L. Ren, H. Li, A review of damage detection methods for wind turbine blades. Smart Mater. Struct. 24(3), 033001 (2015)

    Article  Google Scholar 

  4. H.F. Zhou, H.Y. Dou, L.Z. Qin, Y. Chen, Y.Q. Ni, J.M. Ko, A review of full-scale structural testing of wind turbine blades. Renew. Sustain. Energy Rev. 33, 177–187 (2014)

    Article  Google Scholar 

  5. G. Romhány, T. Czigány, J. Karger-Kocsis, Failure assessment and evaluation of damage development and crack growth in polymer composites via localization of acoustic emission events: a review. Polym. Rev. 57(3), 397–439 (2017)

    Article  Google Scholar 

  6. M. Haggui, A. El Mahi, Z. Jendli, A. Akrout, M. Haddar, Static and fatigue characterization of flax fiber reinforced thermoplastic composites by acoustic emission. Appl. Acoust. 147, 100–110 (2019)

    Article  Google Scholar 

  7. H. Sayar, M. Azadi, A. Ghasemi-Ghalebahman, S.M. Jafari, Clustering effect on damage mechanisms in open-hole laminated carbon/epoxy composite under constant tensile loading rate, using acoustic emission. Compos. Struct. 204, 1–11 (2018)

    Article  Google Scholar 

  8. P.F. Liu, J.K. Chu, Y.L. Liu, J.Y. Zheng, A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 37, 228–235 (2012)

    Article  CAS  Google Scholar 

  9. D. Xu, P.F. Liu, J.G. Li, Z.P. Chen, Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning. Compos. Struct. 211, 351–363 (2019)

    Article  Google Scholar 

  10. M. Assarar, M. Bentahar, A. El Mahi, R. El Guerjouma, Monitoring of damage mechanisms in sandwich composite materials using acoustic emission. Int. J. Damage Mech 24(6), 787–804 (2014)

    Article  Google Scholar 

  11. A.R. Oskouei, H. Heidary, M. Ahmadi, M. Farajpur, Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites. Mater. Des. 37, 416–422 (2012)

    Article  Google Scholar 

  12. P.F. Liu, J. Yang, X.Q. Peng, Delamination analysis of carbon fiber composites under hygrothermal environment using acoustic emission. J. Compos. Mater. 51(11), 1557–1571 (2017)

    Article  CAS  Google Scholar 

  13. M. Chai, Z. Zhang, Q. Duan, A new qualitative acoustic emission parameter based on Shannon’s entropy for damage monitoring. Mech. Syst. Signal Proc. 100, 617–629 (2018)

    Article  Google Scholar 

  14. Z. Yang, W. Yan, L. Jin, F. Li, Z. Hou, A novel feature representation method based on original waveforms for acoustic emission signals. Mech. Syst. Signal Proc. 135, 106365 (2020)

    Article  Google Scholar 

  15. W. Guo, B. Li, S. Shen, Q. Zhou, An intelligent grinding burn detection system based on two-stage feature selection and stacked sparse autoencoder. Int. J. Adv. Manuf. Technol. 103(5–8), 2837–2847 (2019)

    Article  Google Scholar 

  16. L. Li, Y. Swolfs, I. Straumit, X. Yan, S.V. Lomov, Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites. J. Compos. Mater. 50(14), 1921–1935 (2015)

    Article  Google Scholar 

  17. H. Heidary, N.Z. Karimi, M. Ahmadi, A. Rahimi, A. Zucchelli, Clustering of acoustic emission signals collected during drilling process of composite materials using unsupervised classifiers. J. Compos. Mater. 49(5), 559–571 (2014)

    Article  Google Scholar 

  18. L. Li, X. Yan, Progressive damage analysis for cross-ply graded PE/PE composites based on cluster analysis of acoustic emission signals. J. Thermoplast. Compos. Mater. 31(5), 634–656 (2017)

    Article  Google Scholar 

  19. A.A.B. Davijani, M. Hajikhani, M. Ahmadi, Acoustic emission based on sentry function to monitor the initiation of delamination in composite materials. Mater. Des. 32(5), 3059–3065 (2011)

    Article  Google Scholar 

  20. X. Lin, G. Chen, J. Li, F. Lu, S. Huang, X. Cheng, Investigation of acoustic emission source localization performance on the plate structure using piezoelectric fiber composites. Sens. Actuator A Phys. 282, 9–16 (2018)

    Article  CAS  Google Scholar 

  21. C. Gómez Muñoz, M.F. García, A new fault location approach for acoustic emission techniques in wind turbines. Energies 9(1), 40 (2016)

    Article  Google Scholar 

  22. S.K. Al-Jumaili, M.R. Pearson, K.M. Holford, M.J. Eaton, R. Pullin, Acoustic emission source location in complex structures using full automatic delta T mapping technique. Mech. Syst. Signal Proc. 72–73, 513–524 (2016)

    Article  Google Scholar 

  23. M.J. Eaton, R. Pullin, K.M. Holford, Acoustic emission source location in composite materials using Delta T Mapping. Compos. Part A Appl. Sci. Manuf. 43(6), 856–863 (2012)

    Article  Google Scholar 

  24. J.P. McCrory, S.K. Al-Jumaili, D. Crivelli, M.R. Pearson, M.J. Eaton, C.A. Featherston et al., Damage classification in carbon fibre composites using acoustic emission: a comparison of three techniques. Compos. Part B Eng. 68, 424–430 (2015)

    Article  CAS  Google Scholar 

  25. K.R. Kim, Y.S. Lee, Acoustic emission source localization in plate-like structures using least-squares support vector machines with delta t feature. J. Mech. Sci. Technol. 28(8), 3013–3020 (2014)

    Article  Google Scholar 

  26. C. Fendzi, M. Rébillat, N. Mechbal, M. Guskov, G. Coffignal, A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves. Struct. Health Monit. 15(5), 525–540 (2016)

    Article  Google Scholar 

  27. D.D. Doan, E. Ramasso, V. Placet, S. Zhang, L. Boubakar, N. Zerhouni, An unsupervised pattern recognition approach for AE data originating from fatigue tests on polymer-composite materials. Mech. Syst. Signal Proc. 64–65, 465–478 (2015)

    Article  Google Scholar 

  28. M. Kharrat, E. Ramasso, V. Placet, M.L. Boubakar, A signal processing approach for enhanced acoustic emission data analysis in high activity systems: application to organic matrix composites. Mech. Syst. Signal Proc. 70–71, 1038–1055 (2016)

    Article  Google Scholar 

  29. L. Zhen, H. Zhengjia, Z. Yanyang, W. Yanxue, Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection. J. Sound Vib. 313(1–2), 342–359 (2008)

    Article  Google Scholar 

  30. E. Douka, S. Loutridis, A. Trochidis, Crack identification in plates using wavelet analysis. J. Sound Vib. 270(1–2), 279–295 (2004)

    Article  Google Scholar 

  31. S. Loutridis, E. Douka, L.J. Hadjileontiadis, A. Trochidis, A two-dimensional wavelet transform for detection of cracks in plates. Eng. Struct. 27(9), 1327–1338 (2005)

    Article  Google Scholar 

  32. R. Mohammadi, M.A. Najafabadi, M. Saeedifar, J. Yousefi, G. Minak, Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites. Compos. Part B Eng. 108, 427–435 (2017)

    Article  Google Scholar 

  33. W. Zhou, W.-Z. Zhao, Y.-N. Zhang, Z.-J. Ding, Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites. Compos. Struct. 195, 349–358 (2018)

    Article  Google Scholar 

  34. C. Yilmaz, C. Akalin, I. Gunal, H. Celik, M. Buyuk, A. Suleman et al., A hybrid damage assessment for E-and S-glass reinforced laminated composite structures under in-plane shear loading. Compos. Struct. 186, 347–354 (2018)

    Article  Google Scholar 

  35. J.L. Tang, S. Soua, C. Mares, T.H. Gan, A pattern recognition approach to acoustic emission Data originating from fatigue of wind turbine blades. Sensors 17(11), 2507 (2017)

    Article  Google Scholar 

  36. M. Fotouhi, H. Heidary, M. Ahmadi, F. Pashmforoush, Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering. J. Compos. Mater. 46(15), 1795–1808 (2012)

    Article  Google Scholar 

  37. W. Roundi, A. El Mahi, A. El Gharad, J.L. Rebiere, Acoustic emission monitoring of damage progression in glass/epoxy composites during static and fatigue tensile tests. Appl. Acoust. 132, 124–134 (2018)

    Article  Google Scholar 

  38. D.S. de Vasconcellos, F. Touchard, L. Chocinski-Arnault, Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: a multi-instrumented damage analysis. Int. J. Fatigue 59, 159–169 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Liu would sincerely like to thank the support of the Special Funding for Basic Scientific Research of Central Universities (No. 2019QNA4049) and the National Natural Science Funding of China (No. 51875512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Liu, P.F., Chen, Z.P. et al. An Experimental Analysis for Damage Monitoring in Glass Fiber/Epoxy Composites During Fatigue Tests by Acoustic Emission. J Fail. Anal. and Preven. 20, 2119–2128 (2020). https://doi.org/10.1007/s11668-020-01028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-01028-z

Keywords

Navigation