Skip to main content

Advertisement

Log in

Stochastic Tensile Failure Analysis on Dissimilar AA6061-T6 with AA7075-T6 Friction Stir Welded Joints and Predictive Modeling

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The issue of weld solidification cracking in fusion welding of highly alloyed aerospace aluminum alloys is eliminated in friction stir welding (FSW) because the base materials do not melt during welding. However, in FSW, the weld joint quality characteristics are found with highly sensitive for the variation of process variables. Therefore, this investigation deals with the analysis of the significance of FSW processing conditions, construction of stochastic tensile failure probability models for dissimilar AA6061-T6 with AA7075-T6 aluminum alloy friction stir welded joints, and postulation of their statistical predictive models. The experimental results have shown an effective mixing at the interface of both base alloys attributed to efficient bonding and resulted in the mechanical properties with the weld joints. A lowest tensile strength was achieved for the weld joint produced by the straight cylindrical profiled tool pin, which is 24.51% lower than the UTS of AA6061-T6 unwelded alloy while 59.09% lower than the AA7075-T6 unwelded alloy. The survival probability of the weld joints fabricated at 30 mm/min is 92% for 260 MPa applied stress, but the weld joints fabricated at 20 and 40 mm/min are 70 and 40%, respectively. For 50% reliability of the weld joint, the maximum allowable stress values suggested are 270, 288, and 255 MPa for processed at of 20, 30, and 40 mm/min welding speeds, respectively. The application stresses beyond 290 MPa, and the survival probability of the weld joints fabricated at 40 mm/min is zero. Empirical models postulated for tensile strength, ductility, and microhardness were fund with a reasonable agreement with their experimental measurements statistically. The derived reliability and empirical models can be used to estimate the reliability of the welded joints and predict their mechanical properties to estimate and enhance the functional performance of the welded structures in automobile and aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Bagheri, M. Abbasi, M. Dadaei, Mechanical behavior and microstructure of AA6061-T6 joints made by friction stir vibration welding. J. Mater. Eng. Perform. 29(2), 1165–1175 (2020). https://doi.org/10.1007/s11665-020-04639-7

    Article  CAS  Google Scholar 

  2. S.A. Khodir, T. Shibayanagi, Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 148(1–3), 82–87 (2008). https://doi.org/10.1016/j.mseb.2007.09.024

    Article  CAS  Google Scholar 

  3. S.S. Emamian, M. Awang, F. Yusof, M. Sheikholeslam, M. Mehrpouya, Improving the friction stir welding tool life for joining the metal matrix composites. Int. J. Adv. Manuf. Technol. 106(7–8), 3217–3227 (2020). https://doi.org/10.1007/s00170-019-04837-1

    Article  Google Scholar 

  4. K. Singh, G. Singh, H. Singh, Review on friction stir welding of magnesium alloys. J. Mag. Alloy. 6(4), 399–416 (2018). https://doi.org/10.1016/j.jma.2018.06.001

    Article  CAS  Google Scholar 

  5. C. Zhang et al., Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding. J. Manuf. Process. 9, 214–226 (2020). https://doi.org/10.1016/j.jmapro.2019.11.031

    Article  Google Scholar 

  6. M. Koilraj, V. Sundareswaran, S. Vijayan, S.R. Koteswara Rao, Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083: optimization of process parameters using Taguchi technique. Mater. Des. 42, 1–7 (2012). https://doi.org/10.1016/j.matdes.2012.02.016

    Article  CAS  Google Scholar 

  7. N. Shanmuga Sundaram, N. Murugan, Tensile behavior of dissimilar friction stir welded joints of aluminium alloys. Mater. Des. 31(9), 4184–4193 (2010). https://doi.org/10.1016/j.matdes.2010.04.035

    Article  CAS  Google Scholar 

  8. R. Padmanaban, V. Balusamy, R. Vaira Vignesh, Effect of friction stir welding process parameters on the tensile strength of dissimilar aluminum alloy AA2024-T3 and AA7075-T6 joints. Materwiss. Werksttech. 51(1), 17–27 (2020). https://doi.org/10.1002/mawe.201800184

    Article  Google Scholar 

  9. N.Z. Khan, A.N. Siddiquee, Z.A. Khan, A.K. Mukhopadhyay, Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J. Alloys Compd. 695, 2902–2908 (2017). https://doi.org/10.1016/j.jallcom.2016.11.389

    Article  CAS  Google Scholar 

  10. A. Rasoulpouraghdam, I. Pustokhina, Dissimilar modified friction stir clinching of AA2024-AA6061 aluminum alloys: effects of materials positioning. Integr. Med. Res. 9(3), 6037–6047 (2020). https://doi.org/10.1016/j.jmrt.2020.04.007

    Article  CAS  Google Scholar 

  11. A.A.M. da Silva, E. Arruti, G. Janeiro, E. Aldanondo, P. Alvarez, A. Echeverria, Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater. Des. 32(4), 2021–2027 (2011). https://doi.org/10.1016/j.matdes.2010.11.059

    Article  CAS  Google Scholar 

  12. J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, J. Wei, Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater. Des. 56, 185–192 (2014). https://doi.org/10.1016/j.matdes.2013.10.082

    Article  CAS  Google Scholar 

  13. S.K. Park, S.T. Hong, J.H. Park, K.Y. Park, Y.J. Kwon, H.J. Son, Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys. Sci. Technol. Weld. Join. 15(4), 331–336 (2010). https://doi.org/10.1179/136217110X12714217309696

    Article  CAS  Google Scholar 

  14. H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi, Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086-AA6061. J. Mater. Sci. 46(10), 3258–3268 (2011). https://doi.org/10.1007/s10853-010-5213-x

    Article  CAS  Google Scholar 

  15. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R Reports 50(1–2), 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  16. R. Palanivel, P. Koshy Mathews, N. Murugan, I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 40, 7–16 (2012). https://doi.org/10.1016/j.matdes.2012.03.027

    Article  CAS  Google Scholar 

  17. X. Liu, S. Lan, J. Ni, Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des. 59, 50–62 (2014). https://doi.org/10.1016/j.matdes.2014.02.003

    Article  CAS  Google Scholar 

  18. S.M. Senthil, R. Parameshwaran, S. Ragu Nathan, M. Bhuvanesh Kumar, K. Deepandurai, A multi-objective optimization of the friction stir welding process using RSM-based-desirability function approach for joining aluminum alloy 6063-T6 pipes. Struct. Multidiscip. Optim. (2020). https://doi.org/10.1007/s00158-020-02542-2

    Article  Google Scholar 

  19. P. Prakash, R.S. Anand, S.K. Jha, Prediction of weld zone shape with effect of tool pin profile in friction stir welding process. J. Mech. Sci. Technol. 34(1), 279–287 (2020). https://doi.org/10.1007/s12206-019-1229-6

    Article  Google Scholar 

  20. C.W. Yang, F.Y. Hung, T.S. Lui, L.H. Chen, J.Y. Juo, Weibull statistics for evaluating failure behaviors and joining reliability of friction stir spot welded 5052 aluminum alloy. Mater. Trans. 50(1), 145–151 (2009). https://doi.org/10.2320/matertrans.MRA2008341

    Article  CAS  Google Scholar 

  21. G. Minak, L. Ceschini, I. Boromei, M. Ponte, Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites. Int. J. Fatigue 32(1), 218–226 (2010). https://doi.org/10.1016/j.ijfatigue.2009.02.018

    Article  CAS  Google Scholar 

  22. P.S. Effertz, V. Infante, L. Quintino, U. Suhuddin, S. Hanke, J.F. Dos Santos, Fatigue life assessment of friction spot welded 7050-T76 aluminium alloy using Weibull distribution. Int. J. Fatigue 87, 381–390 (2016). https://doi.org/10.1016/j.ijfatigue.2016.02.030

    Article  CAS  Google Scholar 

  23. S. Rajakumar, V. Balasubramanian, Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater. Des. 40, 17–35 (2012). https://doi.org/10.1016/j.matdes.2012.02.054

    Article  CAS  Google Scholar 

  24. M.R.M. Aliha, M. Shahheidari, M. Bisadi, M. Akbari, S. Hossain, Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique. Int. J. Adv. Manuf. Technol. 86(9–12), 2551–2565 (2016). https://doi.org/10.1007/s00170-016-8341-x

    Article  Google Scholar 

  25. M.H. Shojaeefard, R.A. Behnagh, M. Akbari, M.K.B. Givi, F. Farhani, Modelling and pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater. Des. 44, 190–198 (2013). https://doi.org/10.1016/j.matdes.2012.07.025

    Article  CAS  Google Scholar 

  26. S. Kosaraju, V.G. Anne, Optimal machining conditions for turning Ti-6Al-4 V using response surface methodology. Adv. Manuf. 1(4), 329–339 (2013). https://doi.org/10.1007/s40436-013-0047-9

    Article  Google Scholar 

  27. H. Heydari, M. Akbari, Investigating the effect of process parameters on the temperature field and mechanical properties in pulsed laser welding of Ti6Al4V alloy sheet using response surface methodology. Infrared Phys. Technol. 106, 103267 (2020). https://doi.org/10.1016/j.infrared.2020.103267

    Article  CAS  Google Scholar 

  28. Y. Koli, N. Yuvaraj, S. Aravindan, Vipin, Multi-response Mathematical Modeling for Prediction of Weld Bead Geometry of AA6061-T6 Using Response Surface Methodology. Trans. Indian Inst. Met. 73(3), 645–666 (2020). https://doi.org/10.1007/s12666-020-01883-2

    Article  CAS  Google Scholar 

  29. S. Mozammil, J. Karloopia, R. Verma, P.K. Jha, Mechanical response of friction stir butt weld Al-4.5%Cu/TiB2/2.5p in situ composite: statistical modelling and optimization. J. Alloys Compd. 826, 154184 (2020). https://doi.org/10.1016/j.jallcom.2020.154184

    Article  CAS  Google Scholar 

  30. J.P. Kumar, Effect of process parameter characteristics on joint strength during ultrasonic metal welding of electrical contacts. Weld. World 64(1), 73–82 (2020). https://doi.org/10.1007/s40194-019-00820-2

    Article  CAS  Google Scholar 

  31. B. Meyghani, M. Awang, A comparison between the flat and the curved friction stir welding (FSW) thermomechanical behaviour. Arch. Comput. Methods Eng. 27(2), 563–576 (2020). https://doi.org/10.1007/s11831-019-09319-x

    Article  Google Scholar 

  32. A. Ghiasvand, M. Kazemi, M. Mahdipour Jalilian, H. Ahmadi Rashid, Effects of tool offset, pin offset, and alloys position on maximum temperature in dissimilar FSW of AA6061 and AA5086. Int. J. Mech. Mater. Eng. (2020). https://doi.org/10.1186/s40712-020-00118-y

    Article  Google Scholar 

  33. A. Nath, P.K. Tiwari, A.K. Rai, S. Sundaram, Evaluation of carbon capture in competent microalgal consortium for enhanced biomass, lipid, and carbohydrate production. 3 Biotech 9(11), 1–15 (2019). https://doi.org/10.1007/s13205-019-1910-6

    Article  Google Scholar 

  34. M. Ghosh, K. Kumar, S.V. Kailas, A.K. Ray, Optimization of friction stir welding parameters for dissimilar aluminum alloys. Mater. Des. 31(6), 3033–3037 (2010). https://doi.org/10.1016/j.matdes.2010.01.028

    Article  CAS  Google Scholar 

  35. M. Ilangovan, S. Rajendra Boopathy, V. Balasubramanian, Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints. Def. Technol. 11(2), 174–184 (2015). https://doi.org/10.1016/j.dt.2015.01.004

    Article  Google Scholar 

  36. K. Elangovan, V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater. Sci. Eng., A 459(1–2), 7–18 (2007). https://doi.org/10.1016/j.msea.2006.12.124

    Article  CAS  Google Scholar 

  37. W.B. Lee, Y.M. Yeon, S.B. Jung, Mechanical properties related to microstructural variation of 6061 Al alloy joints by friction stir welding. Mater. Trans. 45(5), 1700–1705 (2004). https://doi.org/10.2320/matertrans.45.1700

    Article  CAS  Google Scholar 

  38. K. Elangovan, V. Balasubramanian, S. Babu, Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model. Mater. Des. 30(1), 188–193 (2009). https://doi.org/10.1016/j.matdes.2008.04.037

    Article  CAS  Google Scholar 

  39. P. Kah, R. Rajan, J. Martikainen, R. Suoranta, Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. Int. J. Mech. Mater. Eng. (2015). https://doi.org/10.1186/s40712-015-0053-8

    Article  Google Scholar 

  40. C.W. Yang, S.J. Jiang, Weibull statistical analysis of strength fluctuation for failure prediction and structural durability of friction stirwelded Al-Cu dissimilar joints correlated to metallurgical bonded characteristics. Materials (Basel) (2019). https://doi.org/10.3390/ma12020205

    Article  Google Scholar 

  41. R. Taghiabadi, N. Aria, Statistical strength analysis of dissimilar AA2024-T6 and AA6061-T6 friction stir welded joints. J. Mater. Eng. Perform. 28(3), 1822–1832 (2019). https://doi.org/10.1007/s11665-019-03907-5

    Article  CAS  Google Scholar 

  42. A. Ciaś, A. Czarski, The use of weibull statistics to quantify property variability in Fe-3Mn-0.8C sinter-hardened structurally inhomogeneous steels. Arch. Metall. Mater. 58(4), 1045–1052 (2013). https://doi.org/10.2478/amm-2013-0124

    Article  CAS  Google Scholar 

  43. K. Salonitis, A. Kolios, Reliability assessment of cutting tool life based on surrogate approximation methods. Int. J. Adv. Manuf. Technol. 71(5–8), 1197–1208 (2014). https://doi.org/10.1007/s00170-013-5560-2

    Article  Google Scholar 

  44. I.M. Kolthoff, V10 of Design-Expert ® Software: Top Tool for Design of Experiments (DOE) Rave reviews from the expert evaluators What’ s in it for You What’ s New, pp. 1–6 (2016)

  45. C.M. Douglas, Design and Analysis of Experiments. Part 1 (Wiley, Hoboken, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thella Babu Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu Rao, T. Stochastic Tensile Failure Analysis on Dissimilar AA6061-T6 with AA7075-T6 Friction Stir Welded Joints and Predictive Modeling. J Fail. Anal. and Preven. 20, 1333–1350 (2020). https://doi.org/10.1007/s11668-020-00937-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00937-3

Keywords

Navigation