Skip to main content
Log in

Complete Block Shear Fracture Failure Finite Element Analysis

  • Technical Article--Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The experimental and finite element (FE) analyses of the block shear fracture failure in the published literature are limited to the analysis of the fracture on the surface of the gusset plates and connected members without the analysis of the through-thickness fracture in block shear fracture failure. This paper presents the FE analysis of the complete block shear fracture failure covering the analyses of the block shear surface and through-thickness fracture failure. This study reveals the following: The block shear fracture initiation occurs at the tensile plane mid-thickness and not on the tensile plane surface reported in the published literature. The tension plane through-thickness fracture propagation involves mid-thickness-to-surface fracture propagation and not the surface-to-mid-thickness fracture propagation reported in the published literature. The pure shear fracture that is parallel to the tensile loading direction exhibits a surface-to-mid-thickness fracture sequence while the shear lip fracture that is inclined to the tensile loading direction exhibits a mid-thickness-to-surface fracture propagation. This paper thus identifies the accurate fracture initiation location and through-thickness fracture propagation sequence in block shear fracture essential for the accurate and complete analysis of the block shear fracture not hitherto presented in any published literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.T. Hahn, A. Iyer Kaushik, C.A. Rubin, Structural Shear Joints: Analyses, Properties and Design for Repeat Loading, American Society of Mechanical Engineers (ASME) Digital collection, ASME E book (2005). https://doi.org/10.1115/1.802388

  2. F. Liao, W. Wang, Y. Chen, Ductile fracture prediction for welded steel connections under monotonic loading based on micromechanical failure criteria. Eng. Struct. 94, 16–28 (2015)

    Article  Google Scholar 

  3. J. Przywara, K. Kapil, Failure in structural steels and overview of I-35 W, Bridge Collapse. University of Notre Dame (2017). https://www3.nd.edu/~cpssl/group/work/Failure-in-Structural-Steels-and-Overview-of-I-35W-Bridge-Collapse.pdf. Assessed on 24/06/2018

  4. D. Lam, T. Ang, S. Chiew, Structural steelwork: design to limit state theory, 3rd edn. (Elsevier Butterworth-Heinemann, UK, 2004)

    Google Scholar 

  5. C. Topkaya, A finite element parametric study on block shear failure of steel tension member. J. Constr. Steel Res. 60, 1615–1635 (2004)

    Article  Google Scholar 

  6. T. Kim, H. Kuwamura, Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear. Thin-Walled Struct. 45, 407–421 (2007)

    Article  Google Scholar 

  7. CEN (European Committee for Standardization), BS EN 1993-1-8: 2005: Design of steel structures—Part 1-8: Design of Joints. Eurocode 3, Brussels (2005)

  8. G.F. Vander Voort, Visual examination and light microscopy, ASM Handbook, Vol. 12: Fractography, ASM International, Materials Park, Ohio. 91–165 (1987)

  9. K.K. Adewole, S.J. Bull, Finite element failure analysis of wires for civil engineering applications with various crack-like laminations. Eng. Failure Anal. 60, 229–249 (2016)

    Article  Google Scholar 

  10. B.B.S. Huns, G.Y. Grondin, R.G. Driver, Block shear behaviour of bolted gusset plates Structural Engineering Report No. 248 (Department of Civil & Environmental Engineering, University of Alberta, Canada, 2002)

    Google Scholar 

  11. C.R. Fracnchuk, R.G. Driver, G.Y. Grondin, Block shear behaviour of copped steel beams, Structural engineering report No 244 (Department of civil engineering, University of Alberta, Canada, 2002)

    Google Scholar 

  12. T. Kim, B. Han, Connections in cold-formed stainless steel. ISIJ Int. 47(6), 920–929 (2007)

    Article  CAS  Google Scholar 

  13. P. Može, D. Beg, Investigation of high strength steel connections with several bolts in double shear. J. Constr. Steel Res. 67, 333–347 (2011)

    Article  Google Scholar 

  14. D.D. Clements, L.H. Teh, Active shear planes of bolted connections failing in block shear. J. Struct. Eng. 139(3), 320–327 (2013)

    Article  Google Scholar 

  15. L.H. Teh, M.E. Uz, Block shear failure planes of bolted connections—direct experimental verifications. J. Constr. Steel Res. 111, 70–74 (2015)

    Article  Google Scholar 

  16. L. H. Teh, V. Yazici, Block shear capacity of bolted connections in hot rolled steel plates. Connections VII 7th International Workshop on Connections in Steel Structures (pp. 91–100). (2013). European Convention for Constructional Steelwork

  17. T. Kim, J. Yoo, C.W. Roeder, Experimental investigation on strength and curling influence of bolted connections in thin-walled carbon steel. Thin-Walled Struct. 91, 1–12 (2015)

    Article  Google Scholar 

  18. M.J. Samimi, J.A. Marnani, S.M. Seyedzadeh Otaghsaraie, S.M. Seyedzadeh Otaghsaraie, Block shear experimental and numerical studies on hot rolled channel and gusset plate with staggered bolted connection. Thin-Walled Struct. 108, 153–162 (2016)

    Article  Google Scholar 

  19. Y. Zeynali, M. Jafari Samimi, A. Mazroei, J. Asgari Marnani, M.S. Rohanimanesh, Experimental and numerical study of frictional effects on block shear fracture of steet gusset plates with bolted connections. Thin-Walled Struct. 121, 8–24 (2017)

    Article  Google Scholar 

  20. H. Wen, H. Mahmoud, Numerical Simulation of Fracture in Bolted Gusset-Plate Connections and Welded Hollow Sections. ASCE Structures Congress 2015, (2015)

  21. H. Wen, H. Mahmoud, Simulation of block shear fracture in bolted connections. J. Constr. Steel Res., 134, 1–16. 23–25, 2015. Portland, Oregon, 2433-2443 (2017)

  22. K.K. Adewole, O. Joy, Oladejo Block shear failure finite element deformation-to-fracture failure analysis. Can. J. Civil Eng. 47(4), 418–427 (2020). https://doi.org/10.1139/cjce-2018-0498

    Article  Google Scholar 

  23. Abaqus Simulia, Documentation (Dassault Systemes, Abaqus Incorporated, 2007)

    Google Scholar 

  24. H. Hooputra, H. Gese, H. Dell, H. Werner, A comprehensive failure model for crash worthiness simulation of aluminum extrusions. Int. J. Crash Worthiness 9(5), 449–464 (2004)

    Article  Google Scholar 

  25. K. K. Adewole, T. H. Lip, Predicting steel tensile responses and fracture using the phenomenological ductile shear fracture model. J. Mater. Civil Eng. Soc. Civil Eng. 29(2), 06017019-1–06017019-6 (2017)

  26. K. K. Adewole, Appropriate mesh design for predicting complete fracture behavior of wires for civil engineering applications. Am. Soc. Civil Eng. J. Mater. Civil Eng. 26(12), 04014095-1–04014095-7 (2014)

  27. K.K. Adewole, F. Olutoge, A, Numerical prediction of structural steel flat and slant fracture modes using phenomenological shear fracture model. J. King Saud Univ. Eng. Sci. 31, 234–237 (2019)

    Google Scholar 

  28. K.K. Adewole, S.J. Bull, Numerical prediction of the effects of miniature channel shaped scratches on the fracture behavior of wires for civil engineering applications using finite element analysis. Arch. Civil Eng. 60(2), 181–194 (2014)

    Article  Google Scholar 

  29. K.K. Adewole, S.J. Bull, Prediction of the fracture performance of defect-free steel bars for civil engineering applications using finite element simulation. Constr. Build. Mater. 41, 9–14 (2013)

    Article  Google Scholar 

  30. W.L. Oberkampf, T.G. Trucano, C. Hirsch, Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. 57(5), 345–384 (2004)

    Article  Google Scholar 

  31. I. Scheider, W. Brocks, Simulation of cup–cone fracture using the cohesive model. Eng. Fract. Mech. 70(14), 1943–1961 (2003)

    Article  Google Scholar 

  32. V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169 (1984)

    Article  Google Scholar 

  33. I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear-Experiments. Int. J. Solids Struct. 44(6), 1768–1786 (2007)

    Article  CAS  Google Scholar 

  34. R. Kiran, K. Khandelwal, A triaxiality and Lode parameter dependent ductile fracture criterion. Eng. Fract. Mech. 128, 121–138 (2014)

    Article  Google Scholar 

  35. L. Xue, T. Wierzbicki, Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng. Fract. Mech. 75(11), 3276–3293 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazeem Kayode Adewole.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewole, K.K., Abaho, G. Complete Block Shear Fracture Failure Finite Element Analysis. J Fail. Anal. and Preven. 20, 1258–1265 (2020). https://doi.org/10.1007/s11668-020-00931-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00931-9

Keywords

Navigation