Skip to main content
Log in

Buckling Failure Analysis of Defective Carbon Nanotubes Using Molecular Dynamics Simulation

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Buckling failure under axial compression of defective single-walled carbon nanotubes (SWCNT) having (n, n) and (n, 0)-helicity is studied. Different types of vacancy defects such as monovacancy, bivacancies and tetravacancies as well as topological defect such as Stone–Thrower–Wales with their symmetric and asymmetric distribution are considered. The influence of these initial manufacturing defects on the compression properties is closely studied. The simulation results for armchair (11, 11) and zigzag (19, 0) tubes show that even a single missing atom reduces the buckling capacity of SWCNT. In general, buckling properties deteriorate higher by increasing the missing atoms and asymmetry distribution of vacancy cluster. Further, both vacancy defects and topological defects affect the compression capacity considerably. Zigzag carbon nanotubes (CNTs) have higher compression strength but are more sensitive to vacancy defects than compared to their armchair counterparts. STW defect has more detrimental effect on buckling capacity of armchair SWCNTs than its defective zigzag SWCNT counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubes of graphite carbon. Nature (London) 354, 56–58 (1991)

    CAS  Google Scholar 

  2. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature (London) 363, 603–605 (1993)

    CAS  Google Scholar 

  3. P.A. Williams, S.J. Papadakis, A.M. Patel, M.R. Falvo, S. Washburn, R. Superfine, Fabrication of nanometer scale mechanical devices incorporating individual multi-walled carbon nanotubes as torsional springs. Applied physics letters 82(5), 805–807 (2003)

    CAS  Google Scholar 

  4. A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003)

    CAS  Google Scholar 

  5. S.J. Papadakis, A.R. Hall, P.A. Williams, L. Vicci, M.R. Falvo, R. Superfine et al., Resonant oscillators with carbon nanotube torsion springs. Phys. Rev. Lett. 93, 146101–146104 (2004)

    CAS  Google Scholar 

  6. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Google Scholar 

  7. C. Pozrikidis, Effect of the Stone-wales defect on the structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist. Arch. Appl. Mech. 79, 113–123 (2009)

    Google Scholar 

  8. S. Xiao, W. Hou, Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites Phys. Rev. B 73(11), 3050–3055 (2006)

    Google Scholar 

  9. N. Chandra, S. Namilae, C. Shet, Local elastic properties of carbon nanotubes in the presence of Stone–Wales defects. Phys. Rev. B 69, 94101–1 (2004)

    Google Scholar 

  10. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245416 (2004)

    Google Scholar 

  11. S.-J. Yuan, Y. Kong, F.-S. Li, Mechanical properties of single-walled (5, 5) carbon nanotubes with vacancy defects. Chin. Phys. Lett. 24, 2036–2039 (2007)

    CAS  Google Scholar 

  12. Q. Wang, W.H. Duan, N.L. Richards, K.M. Liew, Modeling of fracture of carbon nanotubes with vacancy defect Phys. Rev. B 75, 201405 (2007)

    Google Scholar 

  13. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and Breaking Mechanism of Multi-Walled Carbon Nanotubes under Tensile Load. Science 287, 637–640 (2000)

    CAS  Google Scholar 

  14. J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren, Superplastic carbon nanotubes: conditions discovered that allow extensive deformation of rigid single-walled nanotubes Nat. Lond. 439, 281 (2006)

    CAS  Google Scholar 

  15. J.Y. Huang, S. Chen, Z.F. Ren, Z. Wang, K. Kempa, M.J. Naughton, G. Chen, M.S. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. Phys. Rev. Lett. 98, 185501 (2007)

    CAS  Google Scholar 

  16. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)

    CAS  Google Scholar 

  17. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    CAS  Google Scholar 

  18. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    CAS  Google Scholar 

  19. X.J. Duan, C. Tang, J. Zhang, W.L. Guo, Z.F. Liu, Two distinct buckling modes in carbon nanotube bending. Nano Lett. 7, 143–148 (2007)

    CAS  Google Scholar 

  20. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nat. Lond. 381, 678–680 (1996)

    CAS  Google Scholar 

  21. O. Lourie, D.M. Cox, H.D. Wagner, Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641 (1998)

    CAS  Google Scholar 

  22. C. Bower, R. Rosen, L. Jin, J. Han, O. Zhou, Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74, 3317–3319 (1999)

    CAS  Google Scholar 

  23. J.F. Waters, L. Riester, M. Jouzi, P.R. Guduru, J.M. Xu, Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Appl. Phys. Lett. 85, 1787–1789 (2004)

    CAS  Google Scholar 

  24. Y. Hirai, S. Nishimaki, H. Mori, Y. Kimoto, S. Akita, Y. Nakayama, Y. Tanaka, Molecular dynamics studies on mechanical properties of carbon nano tubes with pinhole defects. Jpn. J. Appl. Phys. 42, 4120–4123 (2003)

    CAS  Google Scholar 

  25. N. Chandra, S. Namilae, Tensile and compressive behavior of carbon nanotubes: effects of functionalization and topological defects. Mech. Adv. Mater. Struct. 13, 115–127 (2006)

    CAS  Google Scholar 

  26. H. Xin, Q. Han, X.H. Yao, Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 45, 2486–2495 (2007)

    CAS  Google Scholar 

  27. A.M.A. Huq, K.L. Goh, Z.R. Zhou, K. Liao, On defect interactions in axially loaded single-walled carbon nanotubes. J. Appl. Phys. 103, 054306 (2008)

    Google Scholar 

  28. Y.Y. Zhang, Y. Xiang, C.M. Wang, Buckling of defective single-walled carbon nanotubes. J. Appl. Phys. 106, 113503 (2009)

    Google Scholar 

  29. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089–2092 (1996)

    CAS  Google Scholar 

  30. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)

    CAS  Google Scholar 

  31. W. Guo, C.Z. Zhu, T.X. Yu, C.H. Woo, B. Zhang, Y.T. Dai, Formation of sp3 bonding in nanoindented carbon nanotubes and graphite. Phys. Rev. Lett. 93, 245502 (2004)

    Google Scholar 

  32. J.A. Elliott, J.K.W. Sandler, A.H. Windle, R.J. Young, M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92(9), 095501 (2004)

    Google Scholar 

  33. A. Kutana, K.P. Giapis, Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 97(24), 245501 (2006)

    CAS  Google Scholar 

  34. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81(21), 4656 (1998)

    CAS  Google Scholar 

  35. A.J. Lu, B.C. Pan, Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504-1-4 (2004)

    Google Scholar 

  36. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    CAS  Google Scholar 

  37. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    CAS  Google Scholar 

  38. S. Noose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Google Scholar 

  39. L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    CAS  Google Scholar 

  40. C.L. Zhang, H.S. Shen, Buckling and post buckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon 44, 2608–2616 (2006)

    CAS  Google Scholar 

  41. P. Liu, Y.W. Zhang, C. Lu, K.Y. Lam, Tensile and bending properties of double-walled carbon nanotubes. J. Phys. D Appl. Phys. 37(17), 2358 (2004)

    CAS  Google Scholar 

  42. Y.Y. Zhang, V.B.C. Tan, C.M. Wang, Effect of chirality on buckling behavior of single-walled carbon nanotubes. J. Appl. Phys. 100, 074304 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, M., Harsha, S.P., Mishra, M.P. et al. Buckling Failure Analysis of Defective Carbon Nanotubes Using Molecular Dynamics Simulation. J Fail. Anal. and Preven. 20, 868–881 (2020). https://doi.org/10.1007/s11668-020-00886-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00886-x

Keywords

Navigation