Skip to main content
Log in

Study of Solid Particle Erosion Wear Resistance of WC–Co Cemented Carbide

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this paper, several major factors affecting the erosion wear of WC–Co cemented carbide were tested and analyzed by the cemented carbide solid particle erosion test. In addition to the erosion angle, the impact velocity, the hardness and dimensions of the abrasive and the degree of fracture of the abrasive after impacting the target material also have a significant effect on the erosion wear results. Abrasives with a high degree of fragmentation after erosion have lower erosion wear efficiency for cemented carbides. The increase in Co content and WC grain size will lead to the decline of erosion resistance of cemented carbide. After the energy spectrum analysis of the target material after erosion, it was found that Co particles were first detached during the erosion process. Later, due to the instability of the entire microstructure, a series of erosion wears was caused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Furberg, R. Arvidsson, S. Molander, Environmental life cycle assessment of cemented carbide (WC–Co) production. J. Clean. Prod. 209, 1126–1138 (2019)

    Article  CAS  Google Scholar 

  2. I. Finnie, Erosion of surfaces by solid particle. Wear 3(2), 87–103 (1960)

    Article  Google Scholar 

  3. I. Hussainova, M. Anton, A. Zikin, Erosive wear of advanced composites based on WC. Tribol. Int. 46(1), 254–260 (2012)

    Article  Google Scholar 

  4. A. Sharma, A. Kumar, R. Tyagi, Erosive wear analysis of medium carbon dual phase steel under dry ambient condition. Wear 334, 91–98 (2015)

    Article  Google Scholar 

  5. M. Antonov, R. Veinthal, D.-L. Yung, D. Katušin, I. Hussainova, Mapping of impact-abrasive wear performance of WC–Co cemented carbides[J]. Wear 332, 971–978 (2015)

    Article  Google Scholar 

  6. K. Bonny, P. De Baets, O. Van der Biest, J. Vleugels, B. Lauwers, Edge effects in sliding wear behavior of ZrO2–WC composites and WC–Co cemented carbides. Mater. Sci. Forum 561–565, 503–506 (2007)

    Article  Google Scholar 

  7. G. Pezzotti, T. Nishida, Elastic after-effect in WC–Co cemented carbide. J. Eur. Ceram. Soc. 19(4), 419–425 (1999)

    Article  CAS  Google Scholar 

  8. J.D. Gates, M.S. Dargusch, J.J. Walsh, S.L. Field, M.J.-P. Hermand, B.G. Delaup, J.R. Saad, Effect of abrasive mineral on alloy performance in the ball mill abrasion test. Wear 265(5–6), 865–870 (2008)

    Article  CAS  Google Scholar 

  9. ISO 6507-1:2018, Metallic Materials Vickers Hardness Test Part 1: Test Methods

  10. D. Wang, J. Zhao, A. Li, X. Cui, X. Chen, Microstructure level modelling for properties prediction of WC–Co cemented carbides. Mater. Res. Innov. 17, 40–55 (2013)

    Article  Google Scholar 

  11. R.J. John, J. Bijwe, B. Venkataraman, V.B. Tewari, Effect of impinging velocity on the erosive wear behaviour of polyamides. Tribol. Int. 37(3), 219–226 (2004)

    Article  Google Scholar 

  12. Z.L. Ding, J.M. Deng, X.H. Zen, J.P. Wu, Y.S. Zou, Thermal erosion of WC-based cemented carbide nozzles by coal water slurry. Int. J. Refract. Met. Hard Mater. 26(4), 334–339 (2008)

    Article  CAS  Google Scholar 

  13. D. Ciampini, J.K. Spelt, M. Papini, Simulation of interference effects in particle streams following impact with a flat surface. Part 1: theory and analysis. Wear 254(3), 237–249 (2003)

    Article  CAS  Google Scholar 

  14. J.G.A. Bitter, A study of erosion phenomena: part l. Wear 6(3), 5–21 (1963)

    Article  Google Scholar 

  15. J.G.A. Bitter, A study of erosion phenomena: part 2. Wear 6(3), 169–190 (1963)

    Article  Google Scholar 

  16. J. Barber, B.G. Mellor, R.J.K. Wood, The development of sub-surface damage during high energy solid particle erosion of a thermally sprayed WC–C0–Cr coating. Wear 259(1–6), 125–134 (2005)

    Article  CAS  Google Scholar 

  17. M. Liebhard, A.V. Levy, The effect of erodent particle characteristics on the erosion of metals. Wear 151(2), 381–390 (1991)

    Article  CAS  Google Scholar 

  18. J. Abenojar, J. Tutor, Y. Ballesteros, J.C. del Real, M.A. Martínez, Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites. Compos. B Eng. 120, 42–53 (2017)

    Article  CAS  Google Scholar 

  19. R.M. Brach, Impact dynamics with applications to solid particle erosion. Int. J. Impact Eng. 7(1), 37–53 (1988)

    Article  Google Scholar 

  20. V.B. Nguyen, Q.B. Nguyen, Y.W. Zhang, C.Y.H. Lim, B.C. Khoo, Effect of particle size on erosion characteristics. Wear 348, 126–137 (2016)

    Article  Google Scholar 

  21. J. Heinrichs, H. Mikado, A. Kawakami, U. Wiklund, S. Kawamura, S. Jacobson, Wear mechanisms of WC–Co cemented carbide tools and PVD coated tools used for shearing Cu-alloy wire in zipper production. Wear 420, 96–107 (2019)

    Article  Google Scholar 

  22. R.G. Wellman, C. Allen, The effect of angle of impact and material properties on the erosion rate of ceramics. Wear 186–187(Part 1), 117–122 (1995)

    Article  Google Scholar 

  23. Y. Torres, R. Bermejo, F.J. Gotor, E. Chicardi, L. Llanes, Analysis on the mechanical strength of WC–Co cemented carbides under uniaxial and biaxial bending. Mater. Des. 55, 851–856 (2014)

    Article  CAS  Google Scholar 

  24. I. Cha Seung, H. Lee Kyong, J. Ryu Ho, H. Hong Soon, Effect of size and location of spherical pores on transverse rupture strength of WC–Co cemented carbides. Mater. Sci. Eng. A 486(1–2), 404–408 (2008)

    Google Scholar 

  25. U. Beste, L. Hammerstrom, H. Engqvist, S. Rimlinger, S. Jacobson, Particle erosion of cemented carbides with low Co content. Wear 250(1), 809–817 (2001)

    Article  Google Scholar 

  26. S. Hiroyuki, I. Akira, S. Tomoharu, Effects of Co content and WC grain size on wear of WC cemented carbide. Wear 261(2), 126–132 (2006)

    Article  Google Scholar 

  27. H. Hosokawa, K. Shimojima, M. Kawakami, Role of the Co phase in superplasticity for WC–Co cemented carbides. Mater. Trans. 45(4), 1391–1394 (2004)

    Article  CAS  Google Scholar 

  28. J. Weidow, H.-O. André, APT analysis of WC–Co based cemented carbides. Ultramicroscopy 111(6), 595–599 (2011)

    Article  CAS  Google Scholar 

  29. Y. Torres, M. Anglada, L. Llanes, Fatigue limit estimation for WC–Co cemented carbides on the basis of linear elastic fracture mechanics. Boletin de la Sociedad Espanola de Ceramica y Vidrio 43(2), 273–276 (2004)

    Article  CAS  Google Scholar 

  30. A. Laukkanen, T. Pinomaa, K. Holmberg, T. Andersson, Effective interface model for design and tailoring of WC–Co microstructures. Powder Metall. 59(1), 20–30 (2016)

    Article  CAS  Google Scholar 

  31. V.A. Pugsley, C. Allen, Microstructure/property relationships in the cavitation erosion of tungsten carbide–cobalt. Wear 233–235, 93–103 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Fund (OGE201702-05) of the Key Laboratory of Oil and Gas Equipment, Ministry of Education (Southwest Petroleum University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Chen, D., Xu, M. et al. Study of Solid Particle Erosion Wear Resistance of WC–Co Cemented Carbide. J Fail. Anal. and Preven. 20, 543–554 (2020). https://doi.org/10.1007/s11668-020-00861-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00861-6

Keywords

Navigation