Skip to main content
Log in

Electrochemical Inhibitory Effects of Non-edible Vegetable Oils on Low-Alloyed Low Carbon Steel in H2SO4

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Corrosion inhibition mechanisms of Rubber, Neem and Jatropha seeds oils on low-alloyed low-carbon steel in 0.5 M·H2SO4 environment have been investigated herein. Potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron spectroscopy techniques were employed for the experimental process. The results obtained showed that inhibition efficiencies for Rubber, Neem and Jatropha seeds oils reached values of 99.957, 99.275 and 99.998%, respectively. The most shifts in corrosion potentials were > 85 and < 85 in positive directions for Rubber and Neem seeds oils, respectively, while Gibbs free energy of adsorption had values − 29.29 and − 15.06 and − 11.90 kJ/mol for Rubber, Neem and Jatropha seeds oils, respectively. Addition of oil inhibitors initiated formation of protective oxide films on substrate which contributed to increased inhibition efficiencies. The porosity of formed oxide film directly had impact on corrosion inhibition process as it led to localized reactions on substrate. Morphological examination of corroded substrates revealed that RSO was less prone to local corrosive attack. Inhibition efficiencies under the two electrochemical techniques employed corroborated, and corrosion inhibition occurred by retarding charge transfer reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. O.R. Adetunji, P.O. Aiyedun, O.J. Alamu, A.S. Surakat, Electrochemical properties of metals in cassava fluid. J. Eng. Technol. Res. 3(10), 292–297 (2011)

    CAS  Google Scholar 

  2. O.A. Omotosho, J.O. Okeniyi, J.O. Ikotun, C.A. Loto, A.P.I. Popoola, Corrosion behaviour of mild steel in 0.5 M sulphuric acid media in the presence of potassium chromate. J. Eng. Appl. Sci. 13(14), 5789–5795 (2018)

    CAS  Google Scholar 

  3. V.I. Astaschenko, E.A. Zapadnova, N.N. Zapadnova, G.F. Mukhametzyanova, Predicting structure micro-alloyed steel products of different purpose. IOP Conf. Ser. Mater. Sci. Eng. 134, 1–3 (2016)

    Article  Google Scholar 

  4. S.S. Rawat, M.K. Sharma, M.S. Gurjar, Investigation on trip behaviour of low carbon micro alloyed steel. Inter. J. Eng. Technol. Sci. Res. 3(5), 25–33 (2016)

    Google Scholar 

  5. Y. Tian, H. Wang, Y. Li, Z. Wang, G. Wang, The analysis of the microstructure and mechanical properties of low carbon microalloyed steels after ultra fast cooling. Mater. Res. 20(3), 853–859 (2017)

    Article  CAS  Google Scholar 

  6. M. Faisal, A. Saeed, D. Shahzad, N. Abbas, F.A. Larik, General properties of and comparison of the corrosion inhibition efficiency of the triazole derivatives for mild steel. Corros. Rev. 36(6), 507–545 (2018)

    Article  CAS  Google Scholar 

  7. American Iron and Steel Institute, A Designers’ Handbook Series No 9001: Cleaning and Descaling Stainless Steels. Nickel Development Institute. North Carolina, USA. 36pp (1988) (Original Work Published 1982)

  8. L. Messaadia, O.I.D. El Mouden, A. Anejjar, M. Messali, R. Salghi, O. Benali, O. Cherkaoui, A. Lallam, Adsorption and corrosion inhibition of new synthesized pyridazinium-based ionic liquid on carbon steel in 0.5 M H2SO4. J. Mater. Environ. Sci. 6(2), 598–606 (2015)

    CAS  Google Scholar 

  9. M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Moussa, S.A. Al-Mazroa, H.Z. Alkhathlan, Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab. J. Chem. 7, 340–346 (2014)

    Article  CAS  Google Scholar 

  10. G. Aziate, A. El Yadini, H. Saufi, A. Almaofari, A. Benhmama, H. Harhar, S. Gharby, S. El Hajjaji, Study of jojoba vegetable oil as inhibitor of carbon steel C38 corrosion in different acidic media. J. Mater. Environ. Sci. 6(7), 1877–1884 (2015)

    CAS  Google Scholar 

  11. A.S. Yaro, A.A. Khadom, R.K. Wael, Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid. Alexandria Eng. J. 52, 129–135 (2013)

    Article  Google Scholar 

  12. M.H. Nazari, M.S. Shihab, L. Cao, E.A. Haven, X. Shi, A peony–leaves-derived liquid corrosion inhibitor: protecting carbon steel form NaCl. Green Chem. Lett. Rev. 10(4), 359–379 (2017)

    Article  CAS  Google Scholar 

  13. N. Belarbi, F. Dergal, I. Chikhi, S. Merah, D. Lerari, K. Bachari, Study of anti-corrosion activity of Algerian L. stoechas oil on C38 carbon steel in 1 M HCl medium. Int. J. Ind. Chem. 9(2), 115–125 (2018)

    Article  CAS  Google Scholar 

  14. M. Zouarhi, M. Chellouli, S. Abbout, H. Hammouch, A. Dermaji, S.O. Said Hassane, P. Decaro, N. Bettach, N. Hajjaji, A. Srhiri, Inhibiting effect of a green corrosion inhibitor containing Jatropha curcas seed oil for iron in an acidic medium. Portugaliae Electrochimi Acta 36(3), 179–195 (2018)

    Article  CAS  Google Scholar 

  15. K. Chatoui, S. Echihi, H. Harhar, A. Zarrouk, M. Tabyaoui, An investigation of carbon steel corrosion inhibition in 1 M HCl by Lepidium sativum oil as green inhibitor. J. Mater. Environ. Sci. 9(4), 1212–1223 (2018)

    CAS  Google Scholar 

  16. O. Mokhtari, I. Hamdani, A. Chetouani, A. Lahrach, A. ElHalouani, A. Aounit, M. Berrabah, Inhibition of steel corrosion in 1 M HCl by Jatropha curcas Oil. J. Mater. Environ. Sci. 5(1), 310–319 (2014)

    CAS  Google Scholar 

  17. V.M. Abbasov, I.T. Ismayilov, H.M. Abd El-Lateef, S.F. Akhmadbeyovea, Anti-corrosive activities of some novel surfactants based on vegetable oils. Eur. Chem. Bull. 3(5), 437–440 (2014)

    CAS  Google Scholar 

  18. S.O. Ajeigbe, N. Basar, M.A. Hassan, M. Aziz, Optimization of corrosion inhibition of essential oils of Alpina galanga on mild steel using response surface methodology. ARPN J. Eng. Appl. Sci. 12(9), 2763–2771 (2017)

    CAS  Google Scholar 

  19. B.U. Ugi, T.O. Magu, Inhibition, adsorption and thermodynamic investigation of iron corrosion by green inhibitors in acidic medium. Int. J. Sci. Technol. 5(4), 56–64 (2017)

    Google Scholar 

  20. S. Aribo, O.J. Samuel, S.J. Olusegun, A.S. Ogunbadejo, O.O. Ige, Jatropha curcas as a corrosion inhibitor for API 5L-X65 steel under sand deposit in CO2 and aerated oil field environments. Afr. Corros. J. 2(2), 17–27 (2016)

    Google Scholar 

  21. A.O. Okewale, A. Olaitan, The use of rubber leaf extract as a corrosion inhibitor for mild steel in acidic solution. Inter. J. Mater. Chem. 7(1), 5–12 (2017)

    CAS  Google Scholar 

  22. M.E. Mohadyaldinn, N. Azad, A.K. Azad, Evaluation of Jatropha curcas oil as corrosion inhibitor of CO2 corrosion in petroleum production environment. J. Appl. Environ. Biol. Sci. 7(35), 28–34 (2017)

    Google Scholar 

  23. R.T. Loto, Corrosion polarization behaviour and inhibition of S40977 stainless steel in benzosulfonazole/3M H2SO4 solution. S. Afr. J. Chem. Eng. 24, 148–155 (2017)

    Google Scholar 

  24. E. Ituen, O. Akaranta, A. James, Evaluation of performance of corrosion inhibitors using adsorption isotherm models: an overview. Chem. Sci. Inter. J. 18, 1–34 (2017)

    Article  Google Scholar 

  25. A. Chaouiki, H. Lgaz, R. Salghi, S.L. Gaonkar, K.S. Bhat, S. Jodeh, K. Toumiat, H. Oudda, New benzohydrazide derivative as corrosion inhibitor for carbon steel in a 1.0 M HCl solution: electrochemical, DFT and Monte Carlo simulation studies. Portugaliae Electrochimi. Acta 37(3), 147–165 (2019)

    Article  CAS  Google Scholar 

  26. A. Singh, M. Talha, X. Xu, Z. Sun, Y. Lin, Heterocyclic corrosion inhibitors for J55 steel in a sweet corrosive medium. ACS Omega 2, 8177–8186 (2017)

    Article  CAS  Google Scholar 

  27. A. Kosari, M.H. Moayed, A. Davoodi, R. Parvizi, M. Momeni, H. Eshghi, H. Moradi, Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci. 78, 138–150 (2014)

    Article  CAS  Google Scholar 

  28. R.T. Loto, Electrochemical analysis of the corrosion inhibition properties of L-leucine and trypsin complex admixture on high carbon steel in 1 M H2SO4 solution. Rev. Colomb. Quim. 47(2), 12–20 (2018)

    Article  Google Scholar 

  29. M. Taghavikish, N.K. Dutta, N.R. Choudhury, Emerging corrosion inhibitors for interfacial coating. Coatings 7, 1–28 (2017)

    Article  CAS  Google Scholar 

  30. M. Butnariu, P. Negrea, L. Lupa, M. Ciopee, A. Negrea, M. Pentea, I. Sarac, I. Samfira, Remediation of rare earth element pollutants by sorption process using organic natural sorbents. Inter. J. Environ. Res. Public Health 12, 11278–11287 (2015)

    Article  CAS  Google Scholar 

  31. V.M. Abbasov, H.M. Abd El-Lateef, L.I. Aliyeva, E.E. Qasimov, I.T. Ismayilov, M.M. Khalaf, A study of the corrosion inhibition of mild steel C1018 in CO2-saturated brine using some novel surfactants based on corn oil. Egypt. J. Pet. 22, 451–470 (2013)

    Article  Google Scholar 

  32. M.Y. Diaz-Cardenas, M.G. Valladares-Cisneros, S. Lagunas-Rivera, V.M. Salinas-Bravo, R. Lopez-Sesenes, J.G. Gonzalez-Rodriguez, Peumus boldus extract as corrosion inhibitor for carbon steel in 0.5 M sulfuric acid. Green Chem. Lett. Rev. 10(4), 257–268 (2017)

    Article  CAS  Google Scholar 

  33. Q. Wang, J. Yu, J. Xu, H. Fang, S. Liu, Y. Tang, Y. Xi, S. Bai, Realization of graphene on the surface of electroless Ni–P coating for short-term corrosion prevention. Coatings 130(8), 1–10 (2018)

    Google Scholar 

  34. Y. Xu, S. Zhang, W. Li, L. Guo, S. Xu, L. Feng, L.H. Madkour, Experimental and theoretical investigations of some pyrazolo–pyrimidine derivatives as corrosion inhibitors on copper in sulfuric acid solution. Appl. Surf. Sci. 459, 612–620 (2018)

    Article  CAS  Google Scholar 

  35. A. Carmon-Hernandez, E. Vazquez-Velez, J. Uruchurtu-Chavarin, J.G. Gonzalez-Rodriguez, L. Martinez-Gomez, Use of an imidazol synthetized from palm oil as corrosion inhibitor for a supermartensitic stainless steel in H2S. Green Chem. Lett. Rev. 12(1), 89–99 (2019)

    Article  CAS  Google Scholar 

  36. D.V. Ribeiro, C.A.A. Souza, J.C.C. Abrantes, Use of electrochemical impedance spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Ibracon Struct. Mater. J. 8(4), 529–546 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their profound gratitude to MIDWAL engineering, Lagos, Nigeria, and Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Nigeria, for use of equipment and facilities in the course of the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olanrewaju M. Adesusi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesusi, O.M., Adetunji, O.R., Ismaila, S.O. et al. Electrochemical Inhibitory Effects of Non-edible Vegetable Oils on Low-Alloyed Low Carbon Steel in H2SO4. J Fail. Anal. and Preven. 20, 159–172 (2020). https://doi.org/10.1007/s11668-020-00808-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00808-x

Keyword

Navigation