Journal of Failure Analysis and Prevention

, Volume 19, Issue 3, pp 730–737 | Cite as

Comparisons of Experimental Fracture Toughness Testing Methods of Al6061–Graphite Particulate Composites

  • Saleemsab DoddamaniEmail author
  • Mohamed Kaleemulla
Technical Article---Peer-Reviewed


This paper exhibits the investigative work conducted on fracture toughness of aluminum–graphite metal matrix composites. The materials chosen for the study are aluminum 6061 as matrix and graphite particles as reinforcement. The said composite is prepared by using stir casting method. Al6061–graphite has been prepared for 3, 6, 9 and 12% of graphite particles. The fracture experiments of the Al6061–graphite metal matrix composites are carried out. Taguchi’s method is used to optimize the different parameters. The results of the experiments of Al6061–graphite MMC are compared with Al–SiCp MMC. From the results, it is cleared that the Al6061–graphite can be considered as a promising material for aerospace and automobile applications where high crack arrest capabilities and high strength with reduced weight are required.


Al6061–graphite Vickers indentation Compact tension specimens Circumferential notch tensile specimens Single edge notch bend specimens Fracture toughness Taguchi 



  1. 1.
    ASM Handbook, Composites, vol. 21 (ASM International, 2001)Google Scholar
  2. 2.
    T.L. Anderson, Fracture Mechanics-Fundamentals and Applications, 3rd edn. (Taylor & Francis Group, New York, 2013)Google Scholar
  3. 3.
    C.-Y. Chen, C.-G. Chao, Effect of particle-size distribution on the properties of high-volume-fraction SiCp-Al-based composites. Metall. Mater. Trans. A 31A, 2351–2359 (2000)Google Scholar
  4. 4.
    L. Qian et al., Fracture toughness of a 6061Al matrix composite reinforced with fine SiC particles. Jpn. Inst. Met. 43(11), 2838–2842 (2002)Google Scholar
  5. 5.
    H. Kurishita et al., Fracture toughness of JLF-1 by miniaturized 3-point bend specimens with 3.3–7.0 mm thickness. Jpn. Inst. Met. Mater. Trans. 45(3), 936–941 (2004)Google Scholar
  6. 6.
    T. Wei et al., Assessment of the fracture toughness of 6061 aluminium by the small punch test and finite element analysis. Mater. Forum 30, 39–44 (2006)Google Scholar
  7. 7.
    H.B. Shivaraja, B.S. Praveen Kumar, Experimental determination and analysis of fracture toughness of MMC. Int. J. Sci. Res. 3(7), 887–892 (2014)Google Scholar
  8. 8.
    W. Chao, The effect of Ti addition on the microstructure and fracture toughness of BN-AL composite materials synthesized by vacuum infiltration. Arch. Metall. Mater. 58(2), 509–5012 (2013)Google Scholar
  9. 9.
    A. Bhandakkar, R.C. Prasad, S.M.L. Sastry, Elastic plastic fracture toughness of aluminium alloy AA6061 fly ash composites. Adv. Mater. Lett. 5(9), 525–530 (2014). Google Scholar
  10. 10.
    R. Rihan et al., Circumferential notched tensile (CNT) tests for generating K-ISCC data for cast iron vessels used in hot caustic solutions. Int. J. Pres. Ves. Pip. 83(5), 388–393 (2006). Google Scholar
  11. 11.
    S.K. Nath, U.K. Das, Effect of microstructure and notches on the fracture toughness of medium carbon steel. J. Naval Archit. Mar. Eng. 3, 15–22 (2006)Google Scholar
  12. 12.
    N.V. Londe, T. Jayaraju, P.R. Sadananda Rao, Use of round bar specimen in fracture toughness test of metallic materials. Int. J. Eng. Sci. Technol. 2(9), 4130–4136 (2010)Google Scholar
  13. 13.
    Kenneth Kanayo Alaneme, Fracture toughness (K1C) evaluation for dual phase medium carbon low alloy steels using circumferential notched tensile (CNT) specimens. Mater. Res. 14(2), 155–160 (2011)Google Scholar
  14. 14.
    G.G. Vanian, A.K. Hellier, K. Zarrabi, B.G. Prusty, Fracture toughness determination for aluminium alloy 2011-T6 using tensile notched round bar (NRB) test pieces. Int. J. Fract. 181, 147–154 (2013)Google Scholar
  15. 15.
    O.P. Agboola, F. Sarioglu and C. Kızılors, Validation of Circumferential Notched Tensile (CNT) Test Procedure for KISCC Determination. Proceedings of the World Congress on Engineering, London, U.K. Vol III, 3–5 July 2013Google Scholar
  16. 16.
    J.J. Kruzic, R.O. Ritchie, Determining the toughness of ceramics from vickers indentations using the crack-opening displacements: an experimental study. J. Am. Ceram. Soc. 86(8), 1433–1436 (2003)Google Scholar
  17. 17.
    F. Sergejev, M. Antonov, Comparative study on indentation fracture toughness measurements of cemented carbides. Proc. Estonian Acad. Sci. Eng. 12(4), 388–398 (2006)Google Scholar
  18. 18.
    L. Ćurković et al., Hardness and Fracture Toughness of Alumina Ceramics. 12th Conference on Materials, Processes, Friction and Wear, 2007, pp. 40–45Google Scholar
  19. 19.
    J.J. Kruzica, D.K. Kimb, K.J. Koesterc, R.O. Ritchiec, Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues. J. Mech. Behav. Biomed. Mater. 2, 384–395 (2009)Google Scholar
  20. 20.
    S. Doddamani, M. Kaleemulla, Experimental investigation on fracture toughness of Al6061-graphite by using circumferential notched tensile specimens. Frattura ed Integrità Strutturale 39, 274–281 (2017)Google Scholar
  21. 21.
    S. Doddamani, M. Kaleemulla, Fracture toughness investigations of Al6061-Graphite particulate composite using compact specimens. Frattura ed Integrità Strutturale 41, 484–490 (2017)Google Scholar
  22. 22.
    S. Doddamani, M. Kaleemulla, Indentation fracture toughness of Alumnum6061-graphite composites. Int. J. Fract. Damage Mech. 1(1), 40–46 (2016)Google Scholar
  23. 23.
    K.K. Alaneme, A.O. Aluko, Fracture toughness (K 1C) and tensile properties of as-cast and age-hardened aluminium (6063)—silicon carbide particulate composites. Scientia Iranica A 19(4), 992–996 (2012)Google Scholar
  24. 24.
    S. Doddamani, M. Kaleemulla, Review of experimental fracture toughness (KIC) of aluminium alloy and aluminium MMCs. Int. J. Fract. Damage Mech. 1(2), 38–51 (2015)Google Scholar
  25. 25.
    S. Doddamani and M. Kaleemulla, in Strength, Fracture and Complexity. Effect of graphite on fracture toughness of 6061Al-Graphite, vol. 11 (2018)Google Scholar
  26. 26.
    M.S. Raviraj et al., Experimental investigation of effect of specimen thickness on fracture toughness of Al-TiC composites. Frattura ed Integrità Strutturale 37, 360–368 (2016)Google Scholar
  27. 27.
    E.E. Lee, Fatigue Behavior of Silicon Carbide Whisker/Aluminum Composite (Naval Air Development Center, Warminster, 1988)Google Scholar
  28. 28.
    M.V. Achutha, B.K. Sridhara, A. Budan, Fatigue life estimation of hybrid aluminium matrix composites. Int. J. Des. Manuf. Technol. 2(1), 14–21 (2008)Google Scholar
  29. 29.
    Y. Uematsu, K. Tokaji, M. Kawamura, Fatigue behavior of SiC-particulate-reinforced aluminium alloy composites with different particle sizes at elevated temperatures. Compos. Sci. Technol. 68, 2785–2791 (2008)Google Scholar
  30. 30.
    J.J. Mason, R.O. Ritchie, Fatigue crack growth resistance in SiC particulate and whisker reinforced P: M 2124 aluminum matrix composites. Mater. Sci. Eng. A 231, 170–182 (1997)Google Scholar
  31. 31.
    N. Chawla, V.V. Ganesh, Fatigue crack growth of SiC particle reinforced metal matrix composites. Int. J. Fatigue 32, 856–863 (2010)Google Scholar
  32. 32.
    W.A. Logsdon, P.K. Liaw, Tensile, fracture toughness and fatigue crack growth rate properties of silicon carbide whisker and particulate reinforced aluminum metal matrix composites. Eng. Fract. Mech. 24(5), 137–151 (1986)Google Scholar
  33. 33.
    Y. Flom, B.H. Parker, H.P. Chu, Fracture Toughness of SiC/Al Metal Matrix Composite. NASA Technical Memorandum 100745, August 1989Google Scholar
  34. 34.
    R. Hegde et al., Evaluation of heat treatment effect on fracture behavior of aluminum silicon carbide graphite hybrid composite. Int. J. Appl. Eng. Res. 12(5), 605–610 (2017)Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringJain PolytechnicDavangereIndia
  2. 2.Department of Studies in Mechanical EngineeringU B.D.T. College of EngineeringDavangereIndia

Personalised recommendations