Skip to main content
Log in

Enhanced Failure Load Bearing in Adhesively Bonded Strap Repairs: Numerical Analysis and Experimental Results

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Adhesively bonded repairs are frequently used to repair aluminum structures due to their attractive options compared to traditional methods such as welding or riveting. A new method of increasing the repair’s strength against uniaxial tensile loads is used in this study. For this purpose, standard single-strap (SS) and double-strap (DS) repairs were produced with aluminum patch. In the first step, an epoxy-based adhesive was employed to create SS and DS repairs using neat adhesive and 0.5 wt.% reduced graphene oxide (RGO)-reinforced adhesive. Afterward, samples of SS and DS joints with the reinforced adhesive were manufactured to study the effect of the added RGO. Uniaxial tensile tests were conducted and above 30% enhancement in the ultimate load was observed in the joints bonded with reinforced adhesive. The repaired joints were analyzed by finite element (FE) method using cohesive zone modeling technique to obtain failure loads. For this purpose, two sets of tests (a) double cantilever beam and (b) end notch flexure tests were implemented to estimate the cohesive zone model CZM parameters. Comparing the results obtained from experiments and the numerical simulations shows that FE models accurately predict the failure load in the reinforced and unreinforced repaired joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

B :

Specimen width

D :

Diagonal matrix

I :

Identity matrix

G IIC :

Energies released (mode II)

G IC :

Energies released (mode I)

p :

Applied load

T I :

Maximum normal nominal stress

T II :

Maximum shear nominal stress

δ :

Vector of relative displacement

δ i :

Current damage relative displacement in mode I

δ o,i :

Onset damage relative displacement in mode II

υ :

Poisson’s ratio

References

  1. E. Marques, L.F. da Silva, Joint strength optimization of adhesively bonded patches. J. Adhes. 84(11), 915–934 (2008)

    Article  Google Scholar 

  2. B.B. Bouiadjra, H. Fekirini, M. Belhouari, B. Boutabout, B. Serier, Fracture energy for repaired cracks with bonded composite patch having two adhesive bands in aircraft structures. Comput. Mater. Sci. 40(1), 20–26 (2007)

    Article  Google Scholar 

  3. A. Pinto, R. Campilho, I.R. Mendes, A. Baptista, Strap repairs using embedded patches: numerical analysis and experimental results. J. Adhes. Sci. Technol. 28(14–15), 1530–1544 (2014)

    Article  Google Scholar 

  4. Ş. Çitil, Ş. Temiz, H. Altun, A. Özel, Determination of mechanical properties of double-strap adhesive joints with an embedded patch. J. Adhes. Sci. Technol. 25(18), 2555–2567 (2011)

    Article  Google Scholar 

  5. Ş. Temiz, Application of bi-adhesive in double-strap joints subjected to bending moment. J. Adhes. Sci. Technol. 20(14), 1547–1560 (2006)

    Article  Google Scholar 

  6. A. Pinto, R. Campilho, I. Mendes, A. Baptista, Strap repairs using embedded patches: numerical analysis and experimental results. J. Adhes. Sci. Technol. 28(14–15), 1530–1544 (2014)

    Article  Google Scholar 

  7. S. Iijima, Helical microtubules of graphitic carbon. Nature 6348(48), 56–58 (1991)

    Article  Google Scholar 

  8. E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, A. Rousset, Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater. 48(14), 3803–3812 (2000)

    Article  Google Scholar 

  9. Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 39(12), 1876–1883 (2008)

    Article  Google Scholar 

  10. P.C. Ma, J.-K. Kim, B.Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44(15), 3232–3238 (2006)

    Article  Google Scholar 

  11. J. Zhu, J. Kim, H. Peng, J.L. Margrave, V.N. Khabashesku, E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3(8), 1107–1113 (2003)

    Article  Google Scholar 

  12. P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, A. Paipetis, Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J. Compos. Mater. 43(9), 977–985 (2009)

    Article  Google Scholar 

  13. K.D.S. Davey, Development of Carbon Nanotube/Carbon Fiber Multiscale Reinforcement Composites, Electronic Theses, Treatises and Dissertations Paper 823 (2005)

  14. F.H. Gojny, M.H. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15), 2300–2313 (2005)

    Article  Google Scholar 

  15. S. Jana, W.-H. Zhong, Y.X. Gan, Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model. Mater. Sci. Eng. A 445, 106–112 (2007)

    Article  Google Scholar 

  16. Y.J. Kim, T.S. Shin, C.H. Do, J.H. Kwon, Y.-C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1), 23–30 (2005)

    Article  Google Scholar 

  17. M. Rahman, S. Zainuddin, M. Hosur, J. Malone, M. Salam, A. Kumar et al., Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos. Struct. 94(8), 2397–2406 (2012)

    Article  Google Scholar 

  18. M.-H. Kang, J.-H. Choi, J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Compos. Struct. 108, 417–422 (2014)

    Article  Google Scholar 

  19. G. Gkikas, D. Sioulas, A. Lekatou, N. Barkoula, A. Paipetis, Enhanced bonded aircraft repair using nano-modified adhesives. Mater. Des. 41, 394–402 (2012)

    Article  Google Scholar 

  20. J. Kim, B.-S. Yim, J.-M. Kim, J. Kim, The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron. Reliab. 52(3), 595–602 (2012)

    Article  Google Scholar 

  21. U. Khan, P. May, H. Porwal, K. Nawaz, J.N. Coleman, Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS Appl. Mater. Interfaces 5(4), 1423–1428 (2013)

    Article  Google Scholar 

  22. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)

    Article  Google Scholar 

  23. M.A.S. Sadigh, G. Marami, Bearing and cleavage failure simulation of single lap bolted joint using finite element method. Trans. Indian Inst. Met. 69(8), 1613–1622 (2016)

    Article  Google Scholar 

  24. M.A.S. Sadigh, G. Marami, Investigating the effects of reduced graphene oxide additive on the tensile strength of adhesively bonded joints at different extension rates. Mater. Des. 92, 36–43 (2016)

    Article  Google Scholar 

  25. R. Campilho, M.D. Banea, A. Pinto, L.F. da Silva, A. De Jesus, Strength prediction of single-and double-lap joints by standard and extended finite element modelling. Int. J. Adhes. Adhes. 31(5), 363–372 (2011)

    Article  Google Scholar 

  26. P. Hu, X. Han, W. Li, L. Li, Q. Shao, Research on the static strength performance of adhesive single lap joints subjected to extreme temperature environment for automotive industry. Int. J. Adhes. Adhes. 41, 119–126 (2013)

    Article  Google Scholar 

  27. L.F. da Silva, T. Rodrigues, M. Figueiredo, M. De Moura, J. Chousal, Effect of adhesive type and thickness on the lap shear strength. J. Adhes. 82(11), 1091–1115 (2006)

    Article  Google Scholar 

  28. M. De Moura, J. Gonçalves, J. Chousal, R. Campilho, Cohesive and continuum mixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints. Int. J. Adhes. Adhes. 28(8), 419–426 (2008)

    Article  Google Scholar 

  29. M. de Moura, J. Gonçalves, A. Magalhães, A straightforward method to obtain the cohesive laws of bonded joints under mode I loading. Int. J. Adhes. Adhes. 39, 54–59 (2012)

    Article  Google Scholar 

  30. G. Marami, S.A. Nazari, S.A. Faghidian, F. Vakili-Tahami, S. Etemadi, Improving the mechanical behavior of the adhesively bonded joints using RGO additive. Int. J. Adhes. Adhes. 70, 277–286 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Saeimi Sadigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeimi Sadigh, M.A. Enhanced Failure Load Bearing in Adhesively Bonded Strap Repairs: Numerical Analysis and Experimental Results. J Fail. Anal. and Preven. 19, 182–192 (2019). https://doi.org/10.1007/s11668-019-00589-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00589-y

Keywords

Navigation