Skip to main content

Advertisement

Log in

Experimental Analysis on Residual Performance of Used 70 MPa Type IV Composite Pressure Vessels

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This paper was aimed to study residual performance of five 70 MPa type IV hydrogen composite pressure vessels that were employed in vehicles with same driving distance through a series of experiments. Firstly, external and internal visual inspections were performed to evaluate the damage status of hydrogen composite pressure vessels. Then the nonmetallic liner performance tests of one vessel were carried out including crystallinity test, hardness test, and tensile test. Besides, hydraulic fatigue test and hydraulic burst test for the remaining four vessels were conducted to evaluate residual strength. Experimental results show that the nonmetallic liner performance differs in different regions and temperature has an important influence on liner mechanical performance. The comparison between the results of direct burst tests and post-fatigue burst tests shows that long-term fatigue cycles lead to a reduction in burst pressure, but the effect is not significant by using hydraulic fatigue cycles in the current tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.N. Veziroğlu, S. Sahin, 21st century’s energy: hydrogen energy system. Energy Convers. Manag. 49(7), 1820–1831 (2008)

    Article  Google Scholar 

  2. P.P. Edwards, V.L. Kuznetsov, W.I.F. David, Hydrogen energy. Philos. Trans. R. Soc. A 365(1853), 1043–1056 (2007)

    Article  Google Scholar 

  3. M. Gurz, E. Baltacioglu, Y. Hames, K. Kaya, The meeting of hydrogen and automotive: a review. Int. J. Hydrog. Energy 42(36), 23334–23346 (2017)

    Article  Google Scholar 

  4. P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36(12), 4356–4362 (2008)

    Article  Google Scholar 

  5. X. Zhang, J.P. Zhao, Z.W. Wang, Burst pressure prediction and structure reliability analysis of composite overwrapped cylinder. Appl. Compos. Mater. 25(6), 1269–1285 (2018)

    Article  Google Scholar 

  6. J.Y. Zheng, X.X. Liu, P. Xu, P.F. Liu, Y.Z. Zhao, J. Yang, Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrog. Energy 37(1), 1048–1057 (2012)

    Article  Google Scholar 

  7. P.F. Liu, J.K. Chu, S.J. Hou, J.Y. Zheng, Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel. Comput. Mater. Sci. 60, 137–148 (2012)

    Article  Google Scholar 

  8. J.P.B. Ramirez, D. Halm, J. Grandidier, S. Villalonga, F. Nony, 700 bar type IV high pressure hydrogen storage vessel burst—simulation and experimental validation. Int. J. Hydrog. Energy 40(38), 13183–13192 (2015)

    Article  Google Scholar 

  9. B. Magneville, B. Gentilleau, S. Villalonga, F. Nony, H. Galiano, Modeling, parameters identification and experimental validation of composite materials behavior law used in 700 bar type IV hydrogen high pressure storage vessel. Int. J. Hydrog. Energy 40(38), 13193–13205 (2015)

    Article  Google Scholar 

  10. A. Onder, O. Sayman, T. Dogan, N. Tarakcioglu, Burst failure load of composite pressure vessels. Compos. Struct. 89(1), 159–166 (2009)

    Article  Google Scholar 

  11. P.F. Liu, L.J. Xing, J.Y. Zheng, Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Compos. B 56(1), 54–61 (2014)

    Article  Google Scholar 

  12. S. Camara, A.R. Bunsell, A. Thionnet, D.H. Allen, Determination of lifetime probabilities of carbon fibre composite plates and pressure vessels for hydrogen storage. Int. J. Hydrog. Energy 36(10), 6031–6038 (2011)

    Article  Google Scholar 

  13. L. Wang, B. Wang, S. Wei, Y. Hong, C. Zheng, Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure. Compos. B 97, 274–281 (2016)

    Article  Google Scholar 

  14. J. Tomioka, K. Kiguchi, Y. Tamura, H. Mitsuishi, Influence of pressure and temperature on the fatigue strength of type-3 compressed-hydrogen tanks. Int. J. Hydrog. Energy 37(22), 17639–17644 (2012)

    Article  Google Scholar 

  15. P. Blanc-Vannet, Burst pressure reduction of various thermoset composite pressure vessels after impact on the cylindrical part. Compos. Struct. 160, 706–711 (2017)

    Article  Google Scholar 

  16. S. Lin, X. Jia, H. Sun, H. Sun, D. Hui, X. Yang, Thermo-mechanical properties of filament wound CFRP vessel under hydraulic and atmospheric fatigue cycling. Compos. B 46(3), 227–233 (2013)

    Article  Google Scholar 

  17. Y.S. Kim, L.H. Kim, J.S. Park, The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles. Compos. Struct. 93(11), 2963–2968 (2011)

    Article  Google Scholar 

  18. Q.J. Wu, X.H. Liu, L.A. Berglund, An unusual crystallization behavior in polyamide 6/montmorillonite nanocomposites. Macromol. Rapid Commun. 22(17), 1438–1440 (2001)

    Article  Google Scholar 

  19. A. Yebra-Rodríguez, P. Alvarez-Lloret, C. Cardell, A.B. Rodríguez-Navarro, Crystalline properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci. 43, 91–97 (2009)

    Article  Google Scholar 

  20. H.S. da Costa Mattos, J.M.L. Reis, L.G.M.O. de Medeiros, A.H. Monteiro, S.C.S. Teixeira, E.G. Chaves, Analysis of the cyclic tensile behaviour of an elasto-viscoplastic polyamide. Polym. Test. 58, 40–47 (2017)

    Article  Google Scholar 

  21. M. Mizuno, N. Ogami, Y. Negishi, N. Katahira, M. Mizuno, N. Ogami, Y. Negishi, N. Katahira, M. Mizuno, N. Ogami, High pressure hydrogen tank for FCHV (2007)

Download references

Acknowledgments

All authors wish to express their sincere thanks to the support of the National Key Research and Development Program of China (No. 2017YFC0805601). We also thank Jianfang Tan and Dr. Peng Jiang for helping with tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohua Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liao, B., Hua, Z. et al. Experimental Analysis on Residual Performance of Used 70 MPa Type IV Composite Pressure Vessels. J Fail. Anal. and Preven. 19, 204–211 (2019). https://doi.org/10.1007/s11668-019-00581-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00581-6

Keywords

Navigation