Skip to main content
Log in

Calibration of Beremin Parameters for 20MnMoNi55 Steel and Prediction of Reference Temperature (T0) for Different Thicknesses and a/W Ratios

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Master curve and reference temperature (T0) from three-point bending specimens of 20MnMoNi55 steel for different thicknesses and a/W ratios are determined using Kim Wallin’s master curve methodology (ASTM E1921-02) to study the effect of variation in thickness and a/W ratio at reference temperature (T0). Weibull stress at the crack tip is calculated from FE analysis of each fracture test using FE software ABAQUS. Calibration of Beremin parameters, like Weibull modulus (m) and scaling parameter (σu), and Cm,n is done using linear regression analysis of a large number of fracture test data at single test temperature. T0 for different thicknesses and a/W ratios are also evaluated from corresponding Weibull stress based on Beremin model using calibrated m, σu and Cm,n which are compared with experimental results showing case-specific good matching. The same calibrated values of Beremin parameters and Cm,n are also used to evaluate T0 for CT specimen of the same material using Beremin model, and an excellent matching with the experimental result is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

m :

Weibull modulus

σ u :

Scaling parameter

C m,n :

Beremin coefficient

σ w :

Weibull stress

a :

Physical crack size (mm)

B :

Gross thickness of specimens (mm)

B 1T :

Thickness of 1T (one inch) specimen

B 0 :

Thickness of tested specimen (mm)

a/W :

Crack length-to-width ratio of the specimen

W :

Specimen width

RPV:

Reactor pressure vessel

DBT:

Ductile-to-brittle transition

TPB:

Three-point bending

CT:

Compact tension

P f :

Probability of fracture

K JC :

Converted value of JC equal to critical K

K min :

Minimum possible fracture toughness

K JC(median) :

Median fracture toughness

K 0 :

Scale parameter dependent on test temperature and specimen thickness

M :

Censor parameter

References

  1. K. Wallin, The scatter in KIC results. Eng. Fract. Mech. 19(6), 1085–1093 (1984)

    Article  Google Scholar 

  2. I. Sattari-Far, K. Wallin, Application of master curve methodology for structural integrity assessments of nuclear components. SKI Report 2005, 55 (2005)

    Google Scholar 

  3. W.I. Rosinski et al., Application of the master curve in the ASME. Int. J. Press. Vessels Pip. 77, 591–598 (2000)

    Article  CAS  Google Scholar 

  4. M. Graba, The influence of material properties and crack length on the q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. J. Theor. App. Mech. 50(1), 23–46 (2012), Warsaw 2012, 50th anniversary of JTAM

    Google Scholar 

  5. K. Wallin, Quantifying T-stress controlled constraint by the master curve transition temperature T 0. Eng. Fract. Mech. 68, 303–328 (2001)

    Article  Google Scholar 

  6. F.M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. 14A, 2277–2287 (1983)

    Article  CAS  Google Scholar 

  7. C. Ruggieri et al., Transferability of elastic-plastic fracture toughness using the Weibull stress approach: significance of parameter calibration. Eng. Fract. Mech. 67, 101–117 (2000)

    Article  Google Scholar 

  8. R.H. Dodds et al., A framework to assess a/W ratio effects on elastic–plastic fracture toughness (Jc) in SENB specimens. Int. J. Fract. 48, 1–22 (1991)

    Article  CAS  Google Scholar 

  9. C. Ruggieri, R.H. Dodds, A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. Int. J. Fract. 79, 309–340 (1996)

    Article  CAS  Google Scholar 

  10. C. Ruggieri et al., Constraint effects on reference temperature T 0, for ferritic steel in the transition region. Eng. Fract. Mech. 60, 19–36 (1998)

    Article  Google Scholar 

  11. J.P. Petti et al., Coupling of the Weibull stress model and macroscale models to predict cleavage fracture. Eng. Fract. Mech. 71, 2079–2103 (2004)

    Article  Google Scholar 

  12. C. Ruggieri, A New Procedure to Calibrate the Weibull Stress Modulus (m). Department of Naval Architecture and Ocean Engineering, University of São Paulo, São Paulo, SP 05508-900, Brazil

  13. W. J. McAfee et al., An Investigation of Shallow-Flaw Effects on the Master Curve Indexing Parameter (T 0) in RPV material. Letter Report, Division of Engineering Technology Office of Nuclear Regulatory Research. S. Nuclear Regulatory Commission. Published April 2000 (2000)

  14. G. Qian et al., Calibration of a new local approach to cleavage fracture of ferritic steels. Mater. Sci. Eng. A 694, 10–12 (2017)

    Article  CAS  Google Scholar 

  15. A. Andrieu, Beremin model: methodology and application to the prediction of the Euro toughness data set. Eng. Fract. Mech. 95, 102–117 (2012)

    Article  Google Scholar 

  16. K. Wallin, Master curve analysis of the “Euro” fracture toughness dataset. Eng. Fract. Mech. 69, 451–481 (2002)

    Article  Google Scholar 

  17. IAEA-TECDOC-1613, Master curve approach to monitor fracture toughness of reactor pressure vessels in nuclear power plant, vol. 65 (2009)

  18. D.E. McCabe, et al., An Introduction to the Development and Use of the Master Curve Method (ASTM Manual) (Astm Manual Series, Mnl 52)

  19. K. Bhattacharyya et al., Study of constraint effect on reference temperature (T 0) of reactor pressure vessel mater (20mnmoni55 Steel) in the ductile to brittle transition region. Proc. Eng. 86(2014), 264–271 (2014)

    Article  CAS  Google Scholar 

  20. S. Bhowmik et al., Estimation of fracture toughness of 20MnMoNi55 steel in the ductile to brittle transition region using master curve method. Nucl. Eng. Design 241, 2831–2838 (2011)

    Article  CAS  Google Scholar 

  21. S. Bhowmik et al., Evaluation and effect of loss of constraint on master curve reference temperature of 20MnMoNi55 steel. Eng. Fract. Mech. 136, 142–157 (2015)

    Article  Google Scholar 

  22. IAEA-TECDOC-1631, Master Curve Approach to Monitor Fracture Toughness of Reactor Pressure Vessels in Nuclear Power Plants

  23. A. Tiwari et al., Determination of reference transition temperature of In-RAFMS in ductile brittle transition regime using numerically corrected Master Curve approach. Eng. Fract. Mech. 142, 79–92 (2015)

    Article  Google Scholar 

  24. B. Wasiluk et al., Temperature dependence of Weibull stress parameters: studies using the euro-material. Eng. Fract. Mech. 73, 1046–1069 (2006)

    Article  Google Scholar 

  25. M.C. Burstow, Int J Press Vessel Pip. 80, 797–805 (2003)

    Article  Google Scholar 

  26. S. Bhowmik et al., Application and comparative study of master curve methodology for fracture toughness characterization of 20MnMoNi55 steel. Mater. Des. 39, 309–317 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, K., Acharyya, S., Dhar, S. et al. Calibration of Beremin Parameters for 20MnMoNi55 Steel and Prediction of Reference Temperature (T0) for Different Thicknesses and a/W Ratios. J Fail. Anal. and Preven. 18, 1534–1547 (2018). https://doi.org/10.1007/s11668-018-0549-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-018-0549-7

Keywords

Navigation