Advertisement

Journal of Failure Analysis and Prevention

, Volume 18, Issue 5, pp 1133–1142 | Cite as

Cyclic Oxidation and Hot Corrosion Behavior of Plasma-Sprayed CoCrAlY + WC-Co Coating on Turbine Alloys

  • H. S. Nithin
  • Desai Vijay
  • M. R. Ramesh
Technical Article---Peer-Reviewed
  • 66 Downloads

Abstract

Components in energy-producing systems suffer a variety of degradation processes such as oxidation and molten salt-induced corrosion as a consequence of complex multi-component gaseous environment. Coatings provide a composition that will grow the protective scale at high temperatures having long-term stability. Plasma spraying was used to deposit CoCrAlY + WC-Co composite coatings on turbine alloys of Hastelloy X and AISI 321. The thermocyclic oxidation behavior of coated alloys was investigated in static air and in molten salt (Na2SO4-60%V2O5) environment at 700 °C. The thermogravimetric technique was used to approximate the kinetics of oxidation in 50 cycles, each cycle consisting of heating and cooling. X-ray diffraction and SEM/EDAX techniques are used to characterize the oxide scale formed. Coated alloys showed a lower corrosion rate as compared to uncoated alloys. The coatings subjected to oxidation and hot corrosion showed slow scale growth kinetics. Preferential oxidation of Co, Cr, W and its spinel blocks the transport of oxygen and corrosive species into the coating by providing a barrier, thereby making the oxidation rate to reach steady state. As compared to the substrate alloys, coatings show better hot corrosion resistance.

Keywords

Composite coatings Oxidation kinetics Plasma spray process Superalloys Hot corrosion 

References

  1. 1.
    R.A. Mahesh, R. Jayaganthan, S. Prakash, Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900  °C. Mater. Chem. Phys. 111(2), 524–533 (2008)CrossRefGoogle Scholar
  2. 2.
    W. James, S. Rajagopalan, Gas turbines: operating conditions, components and material requirements, in Structural Alloys for Power Plants. Woodhead Publishing Series in Energy, ed. by A. Shirzadi, S. Jackson (Woodhead Publishing, Cambridge, 2014), pp. 3–21CrossRefGoogle Scholar
  3. 3.
    W.T. Becker, R.J. Shipley, Failure Analysis and Prevention, ASM Metals Handbook, vol. 11 (ASM Publication, Metals Park, 2002), p. 1533Google Scholar
  4. 4.
    L. Baiamonte, F. Marra, S. Gazzola, P. Giovanetto, C. Bartuli, T. Valente, G. Pulci, Thermal sprayed coatings for hot corrosion protection of exhaust valves in naval diesel engines. Surf. Coat. Technol. 295, 78–87 (2015)CrossRefGoogle Scholar
  5. 5.
    J.R. Nicholls, N.J. Simms, W.Y. Chan, H.E. Evans, Smart overlay coatings-concept and practice. Surf. Coat. Technol. 149, 236–244 (2002)CrossRefGoogle Scholar
  6. 6.
    N. Ma, L. Guo, Z. Cheng, H. Wu, F. Ye, K. Zhang, Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Appl. Surf. Sci. 320, 364–371 (2014)CrossRefGoogle Scholar
  7. 7.
    F.S. Pettit, G.H. Meier, Oxidation and hot corrosion of superalloys, in The Metallurgical Society of AIME, ed. by M. Gell, C.S. Kartovich, R.H. Bricknel, W.B. Kent, J.F. Radovich (Warrendale, Pennsylvania, 1984), p. 651Google Scholar
  8. 8.
    G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean, L. Bianchi, Tribology of NiCrAlY + Al2O3 composite coatings by plasma spraying with hybrid feeding of dry powder + suspension. Wear 344, 69–85 (2015)CrossRefGoogle Scholar
  9. 9.
    J.A. Cabral-Miramontes, C. Gaona-Tiburcio, F. Almeraya-Calderon, F.H. Estupinan-Lopez, G.K. Pedraza-Basulto, C.A. Poblano-Salas, Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry. Int. J. Corros. 2, 24 (2014)Google Scholar
  10. 10.
    T. Zhang, C. Huang, H. Lan, L. Du, W. Zhang, Oxidation and hot corrosion behavior of plasma-sprayed MCrAlY-Cr2O3 coatings. J. Therm. Spray Technol. 25(6), 1208–1216 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Dellacorte, J.A. Laskowski, Tribological evaluation of PS300: a new chrome oxide-based solid lubricant coating sliding against Al2O3 from 25  °C to 650  °C. Tribol. Trans. 40(1), 163–167 (1997)CrossRefGoogle Scholar
  12. 12.
    J.K.N. Murthy, B. Venkataraman, Abrasive wear behaviour of WC-CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surf. Coat. Technol. 200, 2642–2652 (2006)CrossRefGoogle Scholar
  13. 13.
    J.E. Cho, S.Y. Hwang, K.Y. Kim, Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment. Surf. Coat. Technol. 200, 2653–2662 (2006)CrossRefGoogle Scholar
  14. 14.
    N. Elkhoshkhany, A. Hafnway, A. Khaled, Electrodeposition and corrosion behavior of nano-structured Ni–WC and Ni–Co–WC composite coating. J. Alloys Compd. 695, 1505–1514 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Long, T. Yefa, T. Hua, Microstructure and tribological properties of WC-CeO2/Ni-base alloy composite coatings. Rare Met. Mater. Eng. 43, 823–829 (2014)CrossRefGoogle Scholar
  16. 16.
    M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, B. Venkataraman, Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings. Wear 269(3), 197–205 (2010)CrossRefGoogle Scholar
  17. 17.
    B. Somasundaram, R. Kadoli, M.R. Ramesh, Evaluation of cyclic oxidation and hot corrosion behavior of HVOF-sprayed WC-Co/NiCrAlY coating. J. Therm. Spray Technol. 23, 1000–1008 (2014)CrossRefGoogle Scholar
  18. 18.
    Q.X. Fan, S.M. Jiang, H.J. Yu, J. Gong, C. Sun, Microstructure and hot corrosion behaviors of two Co modified aluminide coatings on a Ni-based superalloy at 700  °C. Appl. Surf. Sci. 311, 214–223 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Porcayo-Calderon, V.M. Salinas Bravo, R.A. Rodriguez-Diaz, L. Martinez-Gomez, R.A. Bravo, Effect of the NaVO3–V2O5 ratio on the high temperature corrosion of chromium. Int. J. Electrochem. Sci. 10, 4928–4945 (2015)Google Scholar
  20. 20.
    S. Espevik, R.A. Rapp, P.L. Daniel, J.P. Hirth, Oxidation of Ni–Cr–W ternary alloys. Oxid. Met. 14, 85–108 (1980)CrossRefGoogle Scholar
  21. 21.
    H. Singh, M. Kaur, S. Prakash, High-temperature exposure studies of HVOF-sprayed Cr3C2-25 (NiCr)/(WC-Co) coating. J. Therm. Spray Technol. 25(6), 1192–1207 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Jafari, M.H. Enayati, M. Salehi, S.M. Nahvi, J.C. Han, C.G. Park, High temperature oxidation behavior of micro/nanostructured WC-Co coatings deposited from Ni-coated powders using high velocity oxygen fuel spraying. Surf. Coat. Technol. 302, 426–437 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Ul-Hamid, Diverse scaling behavior of the Ni–20Cr alloy. Mater. Chem. Phys. 80(1), 135–142 (2003)CrossRefGoogle Scholar
  24. 24.
    I. Gurrappa, Hot corrosion behavior of CM 247 LC alloy in Na2SO4 and NaCl environments. Oxid. Met. 51(5), 353–382 (1999)CrossRefGoogle Scholar
  25. 25.
    C.J. Wang, J.S. Lin, The oxidation of MAR M247 superalloy with Na2SO4 coating. Mater. Chem. Phys. 76(2), 123–129 (2002)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.National Institute of Technology KarnatakaSurathkal, MangaloreIndia
  2. 2.School of Mechanical EngineeringREVA UniversityBangaloreIndia

Personalised recommendations