Journal of Failure Analysis and Prevention

, Volume 18, Issue 5, pp 1111–1119 | Cite as

Effects of Voids Growth on the Damage of Polypropylene/Talc Micro-composite

  • Bel Abbes Bachir Bouiadjra
  • Abdulmohsen Albedah
  • Mohamed Mokhtar Bouziane
  • Ahmed Ouadah Bouakkaz
  • Faycal Benyahia
  • Sohail M. A. Khan Mohamed
Technical Article---Peer-Reviewed


In this study, the effect of the voids growth on the damage of PP/talc micro-composite was analyzed using experimental and numerical approaches. Pure PP was filled with four proportions of treated talc: 5, 10, 40 and 50%. Tensile tests were performed on specimens manufactured from this composite. The Gurson–Tvergaard–Needleman model was implemented in FE model to predict the damage of the PP/talc. The predicted results were compared to the experimental ones. There is a good agreement between the numerical and the experimental results for pure PP, PP + 40% of talc and the PP + 50% of talc. We noted a significant divergence between the experimental and the numerical results for the PP reinforced with 5 and 10% of talc.


Polypropylene Talc Composite GTN model Voids growth 



The Authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research Group No. RGP-VPP-035.


  1. 1.
    A. Menyhárd, P. Suba, Zs László, H.M. Fekete, Á.O. Mester, Zs Horváth, Gy Vörös, J. Varga, J. Móczó, Direct correlation between modulus and the crystalline structure in isotactic polypropylene. Express Polym. Lett. 9, 308–320 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Makhlouf, H. Satha, D. Frihi, S. Gherib, R. Seguela, Optimization of the crystallinity of polypropylene/submicronic-talc composites: the role of filler ratio and cooling rate. Express Polym. Lett. 10, 237–247 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Stern, A. Frick, G. Weickert, Relationship between the structure and mechanical properties of polypropylene: effects of the molecular weight and shear-induced structure. J. Appl. Polym. Sci. 103, 519–533 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Menyhárd, J. Varga, G. Molnár, Comparison of different -nucleators for isotactic polypropylene, characterization by DSC and temperature-modulated DSC (TMDSC) measurements. J. Therm. Anal. Calorim. 83, 625–630 (2006)CrossRefGoogle Scholar
  5. 5.
    O. Alpay, A. Gunay, Determination of Gurson–Tvergaard–Needleman model parameters for failure of apolymeric material. Int. J. Damage 21, 3–25 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Springmann, M. Kuna, Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques. Comput. Mater. Sci. 33, 501–509 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Zaıri, B. Aour, J.M. Gloaguen, M. Naı¨t-Abdelaziz, J.M. Lefebvre, Steady plastic flow of a polymer during equal channel angular extrusion process: experiments and numerical modeling. Polym. Eng. Sci. 48, 1015–1021 (2008)CrossRefGoogle Scholar
  8. 8.
    V. Tvergaard, Material failure by void coalescence in localized shear bands. Int. J. Solids Struct. 18, 659–672 (1982)CrossRefGoogle Scholar
  9. 9.
    L. Farge, S. André, F. Meneau, J. Dillet, C. Cunat, A common multiscale feature of the deformation mechanisms of a semicrystalline polymer. Macromolecules 46, 9659–9668 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Walid, L. Lucien, S. Kacem, Anisotropic (Continuum Damage Mechanics)-based multi-mechanism model for semi-crystalline polymer. Int. J. Damage (2016). (in press) CrossRefGoogle Scholar
  11. 11.
    A. Benzerga, J.-B. Leblond, Ductile fracture by void growth to coalescence, in Advances in applied mechanics, ed. by H. Aref, E. van der Giessen (Elsevier, Netherlands, 2010), pp. 169–305Google Scholar
  12. 12.
    G. Boisot, L. Laiarinandrasana, J. Besson et al., Experimental investigations and modeling of volumechange induced by void growth in polyamide 11. Int. J. Solids Struct. 48, 2642–2654 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Sedlacek, M. Feldmann, B. Kuhn, D. Tschickardt, S. Hohler, C. Muller, W. Hensen, N. Stranghoner, W. Dahl, P. Langenberg, S. Munstermann, J. Brozetti, J. Raoul, R. Pope, F. Bijlaard, Commentary and worked examples to EN 1993-1-10 “Material toughness and through thickness properties” and other toughness oriented rules in EN 1993 JRC Scientific and Technical Reports, European Commission Joint Research Centre (2008)Google Scholar
  14. 14.
    P.G. Kossakowski, An analysis of the load-carrying capacity of ele-ments subjected to complex stress states with a focus on the microstructural failure. Arch. Civ. Mech. Eng. 10(2), 15–39 (2010)CrossRefGoogle Scholar
  15. 15.
    P.G. Kossakowski, Microstructural failure criteria for S235JR steel subjected to spatial stress states. Arch. Civ. Mech. Eng. 15, 195–205 (2015)CrossRefGoogle Scholar
  16. 16.
    P.G. Kossakowski, Effect of initial porosity on material response under multi-axial stress state for S235JR steel. Arch. Civ. Eng. 58(4), 445–462 (2012)CrossRefGoogle Scholar
  17. 17.
    P.G. Kossakowski, The analysis of influence of Tvergaard’s parameters on S235JR steel response in high stress triaxiality. Adv. Mater. Sci. 12(1), 27–35 (2012)Google Scholar
  18. 18.
    A.G. Faramarz, G. Ismail, M. Saman, A. Mohsen, A. Alireza, Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polym. Test. 63, 283–292 (2016)Google Scholar
  19. 19.
    Z. Yuanxin, R. Vijay, M. Hassan, J. Shaik, P.K. Mallick, Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites. Mater. Sci. Eng. A 402, 109–117 (2005)CrossRefGoogle Scholar
  20. 20.
    K. Wang, N. Bahlouli, F. Addiego, S. Ahzi, Y. Rémond, D. Ruch, R. Muller, Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym. Degrad. Stab. 98, 1275–1286 (2013)CrossRefGoogle Scholar
  21. 21.
    A.L. Gurson, Continium theory of ductile rupture by void nucleation and growth: part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRefGoogle Scholar
  22. 22.
    G. Rousselier, Finite deformation constitutive relations including ductile fracture damage, in Three-dimensional Constitutive Relation and Ductile Fracture, S. Nemat-Nasser, pp. 331–355 (1981)Google Scholar
  23. 23.
    A. L. Gurson, Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction. Ph.D. Dissertation, Brown University (1975)Google Scholar
  24. 24.
    A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I-yieldcriteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRefGoogle Scholar
  25. 25.
    V. Tvergaard, Influenceof voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17, 389–407 (1981)CrossRefGoogle Scholar
  26. 26.
    V. Tvergaard, On localization in ductile materials containing spherical voids. Znt. J. Fract. 18, 237–252 (1982)Google Scholar
  27. 27.
    V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensilebar. Acta Metall. 32, 157–169 (1984)CrossRefGoogle Scholar
  28. 28.
    S. Ahmed Reffas, M. Elmeguenni, M. Benguediab, Analysis of void growth and coalescence in porous polymer materials. Technol. Appl. Sci. Res. 3, 452–460 (2013)Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Bel Abbes Bachir Bouiadjra
    • 1
    • 2
  • Abdulmohsen Albedah
    • 2
  • Mohamed Mokhtar Bouziane
    • 1
    • 3
  • Ahmed Ouadah Bouakkaz
    • 1
  • Faycal Benyahia
    • 2
  • Sohail M. A. Khan Mohamed
    • 2
  1. 1.LMPM, Department of Mechanical EngineeringUniversity of Sidi Bel AbbesSidi Bel AbbèsAlgeria
  2. 2.Department of Mechanical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Mechanical EngineeringUniversity Mustapha Stambouli of MasacraMasacraAlgeria

Personalised recommendations