Failure Analysis of Swelling in Prismatic Lithium-Ion Batteries During Their Cycle Life After Long-Term Storage

Technical Article---Peer-Reviewed
  • 47 Downloads

Abstract

This paper details the failure analysis of swelling in prismatic lithium-ion batteries (LIBs) after undergoing several charge–recharge cycles subsequent to long-term storage. The methods of analysis are nondestructive and mainly involve the use of computed tomography (CT) and cell disassembly. Two situations are compared. The first cell is examined after long-term storage, in which case a void space, presumably a gas bubble, is observed around the Ni tap in the cell, and traces of side reactants are found around the center of the anode electrode. This cell is compared with a swollen cell examined after undergoing several cycles after long-term storage, in which, according to the CT results before and after gas removal, gas is detected inside the jelly roll and inside the space between the can body and the jelly roll. Moreover, side reactants are identified near the center of the anode electrode, causing the color of the anode electrode to become irregular. The results show the gas bubbles and side reactants generated as a result of long-term storage are determined to be responsible for the swelling in the cell due to prolonged cycling.

Keywords

Lithium-ion battery Failure analysis Swelling Long-term storage Cycle life Computed tomography 

References

  1. 1.
    M. Holzapfel, A. Würsig, W. Scheifele, J. Vetter, P. Novák, J. Power Sources 174, 1156 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Bourlot, P. Blanchard, S. Robert, J. Power Sources 196, 6841 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Lisbona, T. Snee, J. Process Saf. Environ. Protect. 89, 434 (2011)CrossRefGoogle Scholar
  4. 4.
    N. Zhang, H. Tang, J. Power Sources 218, 52 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Wu, J. Yang, Y. Liu, Y. Zhang, C. Wang, J. Xu, F. Ning, D. Wang, J. Power Sources 237, 285 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Watanabe, M. Kinoshita, K. Nakura, J. Power Source 247, 412 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Goers, M. Holzapfel, W. Scheifele, E. Lehmann, P. Vontobel, P. Novák, J. Power Sources 130, 221 (2004)CrossRefGoogle Scholar
  8. 8.
    B. Michalak, H. Sommer, D. Mannes, A. Kaestner, T. Brezesinski, J. Janek, Sci. Rep. 5, 15627 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Williard, B. Sood, M. Osterman, M. Pecht, J. Mater. Sci. Mater. Electron. 22, 1616 (2011)CrossRefGoogle Scholar
  10. 10.
    IEEE 1625: Standard for Rechargeable Batteries for Multi-Cell Mobile Computing devices. (IEEE Power & Energy Society, New York, 2008)Google Scholar
  11. 11.
    M.D. Farrington, J. Power Sources 80, 278 (1999)CrossRefGoogle Scholar
  12. 12.
    P. Maire, H. Kaiser, W. Scheifele, P. Novák, J. Electroanal. Chem. 664, 127 (2010)CrossRefGoogle Scholar
  13. 13.
    S.J. Harris, A. Timmons, D.R. Baker, C. Monroe, J. Chem. Phys. Lett. 485, 265 (2010)CrossRefGoogle Scholar
  14. 14.
    P. Maire, A. Evans, H. Kaiser, W. Scheifele, P. Novák, J. Electrochem. Soc. 155(11), A862 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Broussely, Ph Biensan, F. Bonhomme, Ph Blanchard, S. Herreyre, K. Nechev, R.J. Staniewicz, J. Power Sources 146, 90 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.-C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 147, 269 (2005)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Analysis and Certification CenterKorea Institute of Ceramic Engineering and TechnologyJinju-siRepublic of Korea

Personalised recommendations