Advertisement

Journal of Failure Analysis and Prevention

, Volume 18, Issue 3, pp 562–567 | Cite as

Physical and Mechanical Aspects of Corrosion Damage of Distribution Gas Pipelines After Long-Term Operation

  • Pavlo Maruschak
  • Lyubomyr Poberezny
  • Olegas Prentkovskis
  • Roman Bishchak
  • Andriy Sorochak
  • Denys Baran
Technical Article---Peer-Reviewed
  • 70 Downloads

Abstract

The fractographic analysis of the corrosion damage of the pipe surface of the distribution gas pipeline after 40 and 56 years of operation is performed. The mechanisms of formation of corrosion pits, laminations, and deep crack-like defects are systematized. On the basis of laboratory studies, which simulate operation conditions of a distribution gas pipeline in corrosive medium, the basic regularities in general corrosion of steel St. 3 in neutral chloride electrolytes are determined, depending on the value of the current density and chemical composition of the medium.

Keywords

Distribution gas pipeline Corrosion Surface damage Defects 

References

  1. 1.
    A. Ebrahimi-Moghadam, M. Farzaneh-Gord, M. Deymi-Dashtebayaz, Correlations for estimating natural gas leakage from above-ground and buried urban distribution pipelines. J. Nat. Gas Sci. Eng. 34, 185–196 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Maruschak, R. Bishchak, I. Konovalenko, A. Menou, J. Brezinová, Effect of long term operation on degradation of material of main gas pipelines. Mater. Sci. Forum 782, 279–283 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Contreras, S.L. Hernandez, R. Orozco-Cruz, R. Galvan-Martinez, Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution. Mater. Des. 35, 281–289 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Eslami, R. Eadie, W. Chen, Effect of oxygen on near-neutral pH stress corrosion crack initiation under a simulated tape coating disbondment. Can. Metall. Q. 55(2), 177–185 (2016)CrossRefGoogle Scholar
  5. 5.
    G.P. Cimellaro, D. Solari, Considerations about the optimal period range to evaluate the weight coefficient of coupled resilience index. Eng. Struct. 69, 12–24 (2014)CrossRefGoogle Scholar
  6. 6.
    C.R.F. Azevedo, Failure analysis of a crude oil pipeline. Eng. Fail. Anal. 14(6), 978–994 (2007)CrossRefGoogle Scholar
  7. 7.
    J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933)CrossRefGoogle Scholar
  8. 8.
    H.M. Nykyforchyn, K.J. Kurzydlowski, E. Lunarska, Hydrogen degradation of steels in long-term service conditions. Environ. Induc. Crack. Mater. 2, 349–361 (2008)Google Scholar
  9. 9.
    V. Cicek, Corrosion Engineering and Cathodic Protection Handbook: With an Extensive Question and Answer Section (Wiley, Hoboken, 2017)CrossRefGoogle Scholar
  10. 10.
    L. Poberezhny, H. Pryslipska, Electrocorrosion degradation of gas pipelines in highly mineralized soils. J. Ternopil Natl. Tech. Univ. 79(3), 71–77 (2015). (in Ukrainian) Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Pavlo Maruschak
    • 1
  • Lyubomyr Poberezny
    • 2
  • Olegas Prentkovskis
    • 3
  • Roman Bishchak
    • 2
  • Andriy Sorochak
    • 1
  • Denys Baran
    • 1
  1. 1.Ternopil National Ivan Pul’uj Technical UniversityTernopilUkraine
  2. 2.Ivano-Frankivsk National Technical University of Oil and GasIvano-FrankivskUkraine
  3. 3.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations