Journal of Failure Analysis and Prevention

, Volume 18, Issue 2, pp 291–303 | Cite as

Finite Element Analysis of the Void Growth and Interface Failure of Ductile Adhesive Joints

  • P. F. Liu
  • Z. H. Hu
  • S. B. Wang
  • W. S. Liu
Technical Article---Peer-Reviewed


Progressive failure of ductile porous adhesive joint generally includes two competitive failure modes: the void growth of ductile adhesive layer and the interface debonding between the adhesive layer and bonding plates. The damage evolution behavior and ultimate strength of ductile adhesive joint are largely dominated by their evolving interactions. However, most of the existing research failed to predict the damage evolution of these two failure modes simultaneously. After the variational weak form of dynamic equilibrium for two adhesive solids with a finite-thickness adhesive layer and two discontinuous cohesive interfaces is given, this paper studies theoretically the competition between these two failure modes using explicit finite element analysis (FEA). The finite-deformation Gurson–Tvergaard–Needleman (GTN) model is used to predict the void growth of adhesive layer, and the bilinear cohesive model as a ABAQUS module is used to simulate the interface debonding. For single-lap joint under tensile loads, effects of the cohesive strengths, the initial void volume fraction, and the thickness of adhesive layer on their interactions are explored. Besides, the ultimate strengths by FEA are also compared with analytical solutions. Numerical results show that dominating failure mode changes from the interface debonding to the failure of adhesive layer at about the cohesive strength 40 MPa and the thickness of adhesive layer 0.5 mm for FM-73 ductile adhesive joint.


Void growth Interface failure Ductile adhesive joint Finite element analysis (FEA) 



Prof. Pengfei Liu would sincerely like to thank the support of the Project of Key Laboratory for Design and Manufacturing of Offshore Wind Power Blade of Jiangsu Province, the National Key Fundamental Research and Development Project of China (No. 2015CB057603), the Open Project of State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics of China (No. MCMS-0216G01), and the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of Xi’an Jiaotong University of China (No. SV2015-KF-09).


  1. 1.
    F. Mortensen, O.T. Thomsen, Analysis of adhesive bonded joints: a unified approach. Compos. Sci. Technol. 62, 1011–1031 (2002)CrossRefGoogle Scholar
  2. 2.
    C.D.M. Liljedahl, A.D. Crocombe, M.A. Wahab, I.A. Ashcroft, Damage modelling of adhesively bonded joints. Int. J. Fract. 141, 147–161 (2006)CrossRefGoogle Scholar
  3. 3.
    G. Li, P. Lee-Sullivan, R.W. Thring, Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints. Compos. Struct. 46, 395–403 (1999)CrossRefGoogle Scholar
  4. 4.
    R.D.S.G. Campilho, M.D. Banea, A.M.G. Pinto, L.F.M. da Silva, A.M.P. de Jesus, Strength prediction of single-and double-lap joints by standard and extended finite element modelling. Int. J. Adhes. Adhes. 31(5), 363–372 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Davies, L. Sohier, J.Y. Cognard, A. Bourmaud, D. Choqueuse, E. Rinnert, R. Créac’hcadec, Influence of adhesive bond line thickness on joint strength. Int. J. Adhes. Adhes. 29, 724–736 (2009)CrossRefGoogle Scholar
  6. 6.
    G. Ji, Z. Ouyang, G. Li, S. Ibekwe, S.S. Pang, Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints. Int. J. Solids Struct. 47, 2445–2458 (2010)CrossRefGoogle Scholar
  7. 7.
    L.F.M. da Silva, T.N.S.S. Rodrigues, M.A.V. Figueiredo, M.F.S.F. de Moura, J.A.G. Chousal, Effect of adhesive type and thickness on the lap shear strength. J. Adhes. 82, 1091–1115 (2006)CrossRefGoogle Scholar
  8. 8.
    D.S. Dugdale, Yielding of steel sheets containing slit. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
  9. 9.
    G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefGoogle Scholar
  10. 10.
    B.R.K. Blackman, H. Hadavinia, A.J. Kinloch, J.G. Williams, The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints. Int. J. Fract. 119, 25–46 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal. Mater. Sci. Eng., A 125, 203–213 (1990)CrossRefGoogle Scholar
  12. 12.
    Q.D. Yang, M.D. Thouless, S.M. Ward, Elastic–plastic mode-II fracture of adhesive joints. Int. J. Solids Struct. 38, 3251–3262 (2001)CrossRefGoogle Scholar
  13. 13.
    V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness. J. Mech. Phys. Solids 41, 1119–1135 (1993)CrossRefGoogle Scholar
  14. 14.
    M.S. Kafkalidis, M.D. Thouless, The effects of geometry and material properties on the fracture of single lap-shear joints. Int. J. Solids Struct. 39, 4367–4383 (2002)CrossRefGoogle Scholar
  15. 15.
    P.A. Gustafson, A.M. Waas, The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints. Int. J. Solids Struct. 46, 2201–2215 (2009)CrossRefGoogle Scholar
  16. 16.
    W. Xu, Y. Wei, Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures. Int. J. Adhes. Adhes. 40, 158–167 (2013)CrossRefGoogle Scholar
  17. 17.
    R.D.S.G. Campilho, M.D. Banea, J. Neto, L.F.M. da Silva, Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations. J. Adhes. 88, 513–533 (2012)CrossRefGoogle Scholar
  18. 18.
    K.N. Anyfantis, Finite element predictions of composite-to-metal bonded joints with ductile adhesive materials. Compos. Struct. 94, 2632–2639 (2012)CrossRefGoogle Scholar
  19. 19.
    P.F. Liu, Z.P. Gu, X.Q. Peng, A nonlinear cohesive/friction coupled model for shear induced delamination of adhesive composite joint. Int. J. Fract. 199, 135–156 (2016)CrossRefGoogle Scholar
  20. 20.
    X.P. Xu, A. Needleman, Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sci. Eng. 1, 111–132 (1993)CrossRefGoogle Scholar
  21. 21.
    J.P. McGarry, É.Ó. Máirtín, G. Parry, G.E. Beltz, Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: theoretical analysis. J. Mech. Phys. Solids 63, 336–362 (2014)CrossRefGoogle Scholar
  22. 22.
    P.F. Liu, M.M. Islam, A nonlinear cohesive model for mixed-mode delamination of composite laminates. Compos. Struct. 106, 47–56 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Sarrado, F.A. Leone, A. Turon, Finite-thickness cohesive elements for modeling thick adhesives. Eng. Fract. Mech. 168, 105–113 (2016)CrossRefGoogle Scholar
  24. 24.
    J. de Castro, T. Keller, Design of robust and ductile FRP structures incorporating ductile adhesive joints. Compos. Part B 41, 148–156 (2010)CrossRefGoogle Scholar
  25. 25.
    R.D.S.G. Campilho, M.D. Banea, J.A.B.P. Neto, L.F.M. da Silva, Modelling adhesive joints with cohesive zone models effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 44, 48–56 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Chadegani, R.C. Batra, Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. Inter. J. Adhes. Adhes. 31, 455–465 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Sengab, R.A. Talreja, Numerical study of failure of an adhesive joint influenced by a void in the adhesive. Compos. Struct. 156, 165–170 (2016)CrossRefGoogle Scholar
  28. 28.
    P.H. Belnoue, S.R. Hallett, Cohesive/adhesive failure interaction in ductile adhesive joints Part I: a smeared-crack model for cohesive failure. Int. J. Adhes. Adhes. 68, 359–368 (2016)CrossRefGoogle Scholar
  29. 29.
    N. Arnaud, R. Créac’hcadec, J.Y. Cognard, A tension/compression–torsion test suited to analyze the mechanical behaviour of adhesives under non-proportional loadings. Int. J. Adhes. Adhes. 53, 3–14 (2014)CrossRefGoogle Scholar
  30. 30.
    A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRefGoogle Scholar
  31. 31.
    V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Mater. 32, 157–169 (1984)CrossRefGoogle Scholar
  32. 32.
    P.P. Camanho, C.G. Davila, M.F. de Moura, Numerical simulation of mixed-mode progressive delamination in the composite materials. J. Compos. Mater. 37, 1415–1438 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Turon, P.P. Camanho, J. Costaa, C.G. Dávila, A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)CrossRefGoogle Scholar
  34. 34.
    P.F. Liu, Z.P. Gu, Y.H. Yang, X.Q. Peng, A nonlocal finite element model for progressive failure analysis of composite laminates. Compos. Part B Eng. 86, 178–196 (2016)CrossRefGoogle Scholar
  35. 35.
    P.F. Liu, Z.P. Gu, X.Q. Peng, J.Y. Zheng, Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression. Compos. Struct. 131, 975–986 (2015)CrossRefGoogle Scholar
  36. 36.
    T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Publications, New York, 2000)Google Scholar
  37. 37.
    Z.L. Zhang, A sensitivity analysis of material parameters for the Gurson constitutive model. Fatigue Fract. Eng. Mater. Struct. 19, 561–570 (1996)CrossRefGoogle Scholar
  38. 38.
    A. Oral, G. Anlas, J. Lambros, Determination of Gurson–Tvergaard–Needleman model parameters for failure of a polymeric material. Int. J. Damage Mech. 21, 3–25 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Cui, Simulation of ductile adhesive failure with experimentally determined cohesive law. Compos. Part B 92, 193–201 (2016)CrossRefGoogle Scholar
  40. 40.
    G. Dean, L. Crocker, B. Read, L. Wright, Prediction of deformation and failure of rubber-toughened adhesive joints. Int. J. Adhes. Adhes. 24, 295–306 (2004)CrossRefGoogle Scholar
  41. 41.
    R.D. Adams, J. Comyn, W.C. Wake, Structural Adhesive Joints in Engineering (Springer Science & Business Media, Berlin, 1997)Google Scholar
  42. 42.
    L. Liao, C. Huang, Numerical analysis of effects of adhesive type and geometry on mixed-mode failure of adhesive joint. Int. J. Adhes. Adhes. 68, 389–396 (2016)CrossRefGoogle Scholar
  43. 43.
    K. Turan, Y. Pekbey, Progressive failure analysis of reinforced-adhesively single-lap joint. J. Adhes. 91, 962–977 (2015)CrossRefGoogle Scholar
  44. 44.
    J.H. Park, J.H. Choi, J.H. Kweon, Evaluating the strengths of thick aluminum-to-aluminum joints with different adhesive lengths and thicknesses. Compos. Struct. 92, 2226–2235 (2010)CrossRefGoogle Scholar
  45. 45.
    K. Naito, M. Onta, Y. Kogo, The effect of adhesive thickness on tensile and shear strength of polyimide adhesive. Int. J. Adhes. Adhes. 36, 77–85 (2012)CrossRefGoogle Scholar
  46. 46.
    M.D. Banea, L.F.M. da Silva, Mechanical characterization of flexible adhesives. J. Adhes. 85, 261–285 (2009)CrossRefGoogle Scholar
  47. 47.
    M. Corrado, M. Paggi, Nonlinear fracture dynamics of laminates with finite thickness adhesives. Mech. Mater. 80, 183–192 (2015)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • P. F. Liu
    • 1
    • 2
    • 3
    • 4
  • Z. H. Hu
    • 1
  • S. B. Wang
    • 1
  • W. S. Liu
    • 2
  1. 1.Institute of Chemical Machinery and Process Equipment, School of Energy EngineeringZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory for Design and Manufacturing of Offshore Wind Power Blade of Jiangsu ProvinceZhongfulianzhong Composite Group Limited CompanyLianyungangChina
  3. 3.State Key Laboratory of Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  4. 4.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations