Journal of Failure Analysis and Prevention

, Volume 17, Issue 6, pp 1251–1259 | Cite as

Failure Investigation of an AlSi9Cu3 Alloy Die-Cast Cavity Insert

  • Xu Li
  • Bao-sheng Liu
  • Li-feng Hou
  • Ying-hui Wei
  • Yi-de Wang
Technical Article---Peer-Reviewed


The examination of a fractured cavity insert, cooperated die to finish geometry intricate aluminum alloy die-casting product, is described. The dominating failure mechanism in the investigated insert is the combination of thermal fatigue cracking and stress concentration. A visual fractographic examination was performed at the cavity insert and crack initiated at the periphery adjacent to a sharp corner. Detailed scanning electron microscopy observations and energy-dispersive X-ray suggest that the crack growth was facilitated by a number of elements: oxidation of the cracks’ surfaces, filling of cast alloy, and high stress concentration of the sharp corner. The thermal cracks were also produced product around the inside wall of the cooling channel. Similarly, these cracks were also subjected to oxidation and filling with scale deposit and oxide. Finally, the schematic of the cavity insert fracture evolution during die-casting is discussed.


Die-casting Cavity insert Thermal fatigue crack Stress concentration Fracture 



The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51374151), the Natural Science Foundation of Shanxi Province (Grant Nos. 2015011038, 201701D121041), and the Ph.D. Scientific Research Startup Foundation (Grant No. 20152011) of TYUST for funding provided in support of this work.


  1. 1.
    K.H. Lee, S.W. Choi, J. Suh et al., Effect of laser power and powder feeding on the microstructure of laser surface alloying hardened H13 steel using SKH51 powder. Mater. Des. 95, 173–182 (2016)CrossRefGoogle Scholar
  2. 2.
    P. He, S.Y. Huang, Z.C. Huang et al., Carbide reinforced Ni–Cr–B–Si–C composite coating on 4Cr5MoSiV1 steel by comprehensive plasma melt injection method. Surf. Coat. Technol. 266, 134–145 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Alimi, J. Fajoui, M. Kchaou et al., Multi-scale hot working tool damage (X40CrMoV5-1) analysis in relation to the forging process. Eng. Fail. Anal. 62, 142–155 (2016)CrossRefGoogle Scholar
  4. 4.
    L.F. Hou, Y.H. Wei, Y.G. Li et al., Erosion process analysis of die-casting inserts for magnesium alloy components. Eng. Fail. Anal. 33, 457–464 (2013)CrossRefGoogle Scholar
  5. 5.
    B.S. Liu, Y.H. Wei, H.M. Li et al., Corrosion failure investigation of seamless stainless steel tube used in die-casting machine of Mg alloy. Eng. Fail. Anal. 39, 200–206 (2014)CrossRefGoogle Scholar
  6. 6.
    B.S. Liu, Y.H. Wei, W.Y. Chen et al., Blistering failure analysis of organic coatings on AZ91D Mg-alloy components. Eng. Fail. Anal. 42, 231–239 (2014)CrossRefGoogle Scholar
  7. 7.
    D.F. Allsop, D. Kennedy, Pressure Diecasting, Part 2: The Technology of the Casting and the Die (Pergamon Press, Oxford, 1983)Google Scholar
  8. 8.
    A. Persson, S. Hogmark, J. Bergstrom, Failure modes in field-tested brass die casting dies. J. Mater. Process. Technol. 148, 108–118 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Jhavar, C.P. Paul, N.K. Jain, Causes of failure and repairing options for dies and molds: a review. Eng. Fail. Anal. 34, 519–535 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Klobcar, J. Tusek, B. Taljat, Thermal fatigue of materials for die-casting tooling. Mater. Sci. Eng. A 472, 198–207 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Klobcar, L. Kosec, B. Kosec, J. Tusek, Thermo fatigue cracking of die casting dies. Eng. Fail. Anal. 20, 43–53 (2012)CrossRefGoogle Scholar
  12. 12.
    V. Joshi, K. Kulkarni, R. Shivpuri et al., Dissolution and soldering behavior of nitrided hot working steel with multilayer LAFAD PVD coatings. Surf. Coat. Technol. 146–147, 338–343 (2001)CrossRefGoogle Scholar
  13. 13.
    V. Joshi, A. Srivastava, R. Shivpuri, Intermetallic formation and its relation to interface mass loss and tribology in die casting dies. Wear 256, 1232–1235 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Persson, S. Hogmark, J. Bergstrom, Simulation and evaluation of thermal fatigue cracking of hot work tool steels. Int. J. Fatigue 26, 1095–1107 (2004)CrossRefGoogle Scholar
  15. 15.
    A. Persson, S. Hogmark, J. Bergstrom, Thermal fatigue cracking of surface engineered hot work tool steels. Surf. Coat. Technol. 191, 216–227 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Persson, S. Hogmark, J. Bergstrom, Temperature profiles and conditions for thermal fatigue cracking in brass die casting dies. J. Mater. Process. Technol. 152, 228–236 (2004)CrossRefGoogle Scholar
  17. 17.
    A.M. Irisarri, A. Pelayo, Failure analysis of an open die forging drop hammer. Eng. Fail. Anal. 16, 1727–1733 (2009)CrossRefGoogle Scholar
  18. 18.
    R.E. Peterson, Stress Concentration Factors (John Wiley & Sons Press, New York, 1974)Google Scholar
  19. 19.
    W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd edn. (John Wiley & Sons Press, New York, 2008)Google Scholar
  20. 20.
    J. Schijve, Fatigue of Structures and Materials (Springer Press, New York, 2008)Google Scholar
  21. 21.
    P.W. Hockanadel, G.R. Edwards, M.C. Maguire, M.D. Baldwin, The effect of microstructure on the thermal fatigue resistance of investment cast and wrought AISI H-13 hot work die steel, in Transactions of the 18th International Die Casting Congress and Exposition, Indianapolis, 1995, p. 343Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Xu Li
    • 1
  • Bao-sheng Liu
    • 1
    • 2
  • Li-feng Hou
    • 1
  • Ying-hui Wei
    • 1
    • 3
  • Yi-de Wang
    • 1
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanChina
  3. 3.Shanxi Institute of TechnologyYangquanChina

Personalised recommendations