Advertisement

Journal of Failure Analysis and Prevention

, Volume 17, Issue 5, pp 948–954 | Cite as

Finite Element Analysis of an Aircraft Wing Leading Edge Made of GLARE Material for Structural Integrity

  • Balachandra P. Shetty
  • Sudheer Reddy
  • R. K. Mishra
Technical Article---Peer-Reviewed
  • 194 Downloads

Abstract

The present paper characterizes the structure of 3D model of an aircraft wing leading edge of a passenger aircraft considering GLARE laminates as one of the candidate materials through finite element analysis. The investigation is carried out on different types of GLARE configurations and the results of finite element analysis are well compared analytically with benchmark tests to demonstrate the performance of the modeling technique adopted. The GLARE laminate materials are found suitable for their application in the wing leading edge with some reservation on GLARE 3/2 and GLARE 4/3 for Al alloy 2024-T3 thickness, between 0.2 and 0.4 mm. The finite element approach is able to predict the mechanical behavior of structural elements fast enough so that the results can be incorporated into normal design iteration processes.

Keywords

GLARE Laminate Wing leading edge Failure analysis Finite element method 

References

  1. 1.
    J. Thorpe, Fatalities and destroyed civil aircraft due to bird strikes, 1912–2002, in International Bird Strike Committee, 26th Meeting (Warsaw, 2003)Google Scholar
  2. 2.
    R.K. Mishra, S.I. Ahmed, K. Srinivasan, Investigation of a bird strike incident of a military gas turbine engine. J. Fail. Anal. Prev. 13(6), 666–672 (2013). doi: 10.1007/s11668-013-9744-8 CrossRefGoogle Scholar
  3. 3.
    S. Heimbs, Bird strike simulations on composite aircraft structures, in SIMULIA Customer Conference (Barcelona, 2011)Google Scholar
  4. 4.
    C. Niu, Airframe Structural Design: Practical Design Information and Data on Aircraft Structures (Conmilit Press, Hong Kong, 1988)Google Scholar
  5. 5.
    T.H.G. Megson, Aircraft Structures for Engineering Students (Elsevier, Amsterdam, 2012)Google Scholar
  6. 6.
    M. Mukhopadhyay, Mechanics of Composite Materials and Structures (Universities press, Hyderabad, 2005)Google Scholar
  7. 7.
    L.B. Vogelesang, A. Vlot, Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103(1), 1–5 (2000)CrossRefGoogle Scholar
  8. 8.
    R.J. Gettens, G.L. Stout, Painting Materials: A Short Encyclopaedia (Courier Corporation, 1966)Google Scholar
  9. 9.
    G. Wu, J.-M. Yang, The mechanical behavior of GLARE laminates for aircraft structures. JOM 57(1), 72–79 (2005)CrossRefGoogle Scholar
  10. 10.
    J.B. Young, J.G.N. Landry, V.N. Cavoulacos, Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium ‘Glare’. Compos. Struct. 27(4), 457–469 (1994)CrossRefGoogle Scholar
  11. 11.
    B.P. Shetty, S. Reddy, R.K. Mishra, Numerical analysis of bird impact on glass-reinforced leading edge of an aircraft wing. J. Fail. Anal. Prev. (2017). doi: 10.1007/s11668-017-0306-3 Google Scholar
  12. 12.
    L.J. Clancy, Aerodynamics (Halsted Press, Sydney, 1975)Google Scholar
  13. 13.
    R.T. Jones, Wing Theory (Princeton University Press, Princeton, 2014)Google Scholar
  14. 14.
    M.H. Dickinson, K.G. Gotz, Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174(1), 45–64 (1993)Google Scholar
  15. 15.
    Shubham. Agarwal, Priyank. Kumar, Numerical investigation of flow field and effect of varying vortex generator location on wing performance. Am. J. Fluid Dyn. 6(1), 11–19 (2016)Google Scholar
  16. 16.
    W. Shyy et al., Aerodynamics of Low Reynolds Number Flyers, vol. 22 (Cambridge University Press, Cambridge, 2007)Google Scholar
  17. 17.
    M.L. Averill, Simulation Modeling and Analysis, 4th edn. (Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008)Google Scholar
  18. 18.
    R.M. Pinkerton, The variation with Reynolds number of pressure distribution over an airfoil section, in NACA Report No. 613 (National Advisory Committee for Aeronautics, 1937)Google Scholar
  19. 19.
    E.N. Jacobs, K.E. Ward, R.M. Pinkerton, The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel, NACA-TR-460, PB-177874 (1933)Google Scholar
  20. 20.
    P. Iaccarino, A. Langella, G. Caprino, A simplified model to predict the tensile and shear stress-strain behavior of fiberglass/aluminum laminates. Compos. Sci. Technol. 67, 1784–1793 (2007)CrossRefGoogle Scholar
  21. 21.
    H.W. Nam, W. Hwang, K.S. Han, Stacking sequence design of fiber-metal laminate for maximum strength. J. Compos. Mater. 35(18), 1654–1683 (2001)CrossRefGoogle Scholar
  22. 22.
    F. Rastellini et al., Composite materials non-linear modelling for long fibre-reinforced laminates: continuum basis, computational aspects and validations. Comput. Struct. 86(9), 879–896 (2008)CrossRefGoogle Scholar
  23. 23.
    C.-H. Lin, M.-H.R. Jen, Analysis of a laminated anisotropic plate by Chebyshev collocation method. Compos. Part B 36, 155–169 (2005)CrossRefGoogle Scholar
  24. 24.
    G.R. Liu, X. Han, K.Y. Lam, An inverse procedure for determination of material constants. Comput. Methods Appl. Mech. Eng. 191, 3543–3554 (2002)CrossRefGoogle Scholar
  25. 25.
    A.K. Onkar, C.S. Upadhyay, D. Yadav, Probabilistic failure of laminated composite plate using the stochastic finite element method. Compos. Struct. 77, 79–91 (2007)CrossRefGoogle Scholar
  26. 26.
    A.M. Gadade, A. Lal, B.N. Singh, Finite element implementation of Puck’s failure criterion for failure analysis of laminated plate subjected to biaxial loadings. Aerosp. Sci. Technol. 55, 227–241 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Debski, J. Jonak, Failure analysis of thin-walled composite channel section columns. Compos. Struct. 132, 567–574 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Hagenbeck, Characterization of Fiber Metal Laminates Under Thermomechanical Loadings. GLARE Data Hand Book, Doctoral Thesis (2005)Google Scholar
  29. 29.
    G. Wu, J.-M. Yang, Analytical modeling and numerical simulation of the non-linear deformation of hybrid fiber metal laminates. Model. Simul. Mater. Sci. Eng. 13, 413–425 (2005)CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Balachandra P. Shetty
    • 1
  • Sudheer Reddy
    • 1
  • R. K. Mishra
    • 2
  1. 1.Nitte Meenakshi Institute of TechnologyBangaloreIndia
  2. 2.Regional Center for Military AirworthinessBangaloreIndia

Personalised recommendations