Abstract
Delamination crack growth in a double cantilever beam laminated composites is modeled by using simple stress analysis beam theory combined with simple linear elastic fracture mechanics and consideration of the theory of elastic failure in mechanics of material. Furthermore, advanced finite element (FE) model is built up. The FE approach employs surface cohesive zone model that is used to simulate the debonding and crack propagation. The analytical modeling, moreover, cracks growth and strain measurements, which are obtained from FE models, are compared with the available published experimental work. The predicted results give good agreement with interlaminar fracture toughness and maximum load which correspond to crack initiation point. The FE models results agree well with the available experimental data for both crack initiation and propagation.
This is a preview of subscription content, access via your institution.












Abbreviations
- \(\sigma_{\text{co}}\) :
-
Cohesive stress
- G IC :
-
Mode I surface release energy or fracture toughness
- F :
-
The load at the end of arm
- E :
-
The Young’s modulus
- I :
-
The second moment of area
- b :
-
Beam width
- h :
-
Beam thickness
- v :
-
Total vertical displacement
- u :
-
Half displacement
- C :
-
Compliance
- \(\partial A\) :
-
Crack extension area
- \(\sigma_{\text{b}}\) :
-
Bending stress
- Y :
-
Distance from point load at crack tip
- U E :
-
Stored elastic energy
- M(x):
-
Bending moment in x axis plane
- G :
-
Surface release energy
- \(\sigma_{\text{u}}\) :
-
Un-notch tensile strength
- X t :
-
Transverse tensile strength
- E eff :
-
Effective Young’s modulus
- K eff :
-
Effective stiffness
- \(\delta_{\text{o}}\) :
-
Critical initiation traction–separation displacement
- \(\delta_{\text{f}}\) :
-
Critical crack opening
- t n :
-
Normal contact stress
- t s :
-
Shear contact stress
- t t :
-
Traction contact stress
- G IC, G IIC, and G IIIC :
-
Mode I, II, and III surface release energy
References
P.P. Camanho, C. Davila, M. De Moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 37(16), 1415–1438 (2003)
V. La Saponara, H. Muliana, R. Haj-Ali, G.A. Kardomateas, Experimental and Numerical Analysis of Delamination Growth in Double Cantilever Laminated Beams. Eng. Fract. Mech. 69(6), 687–699 (2002)
A.C. Garg, Delamination—A Damage Mode in Composite Structures. Eng. Fract. Mech. 29(5), 557–584 (1988)
V.V. Bolotin, Delaminations in Composite Structures: Its Origin, Buckling, Growth and Stability. Compos. Part B Eng. 27(2), 129–145 (1996)
S.T. Pinho, Modelling Failure of Laminated Composites Using Physically-Based Failure Models (Imperial College London (University of London), London, 2005)
S. Pinho, L. Iannucci, P. Robinson, Formulation and Implementation of Decohesion Elements in an Explicit Finite Element Code. Compos. Part A Appl. Sci. Manuf. 37(5), 778–789 (2006)
J.C. Sosa, N. Karapurath, Delamination Modelling of GLARE Using the Extended Finite Element Method. Compos. Sci. Technol. 72(7), 788–791 (2012)
Y. Mohammed, M.K. Hassan, A. Hashem, Analytical Model to Predict Multiaxial Laminate Fracture Toughness from 0 ply Fracture Toughness. Polym. Eng. Sci. 54(1), 234–238 (2014)
Y. Mohammed, K. Mohamed, A. Hashem, Finite Element Computational Approach of Fracture Toughness in Composite Compact-Tension Specimens. Int. J. Mech. Mechatron. Eng. 12(4), 57–61 (2010)
F. Greco, P. Lonetti, R. Zinno, An Analytical Delamination Model for Laminated Plates Including Bridging Effects. Int. J. Solids Struct. 39(9), 2435–2463 (2002)
P. Liu, Z. Gu, Finite Element Analysis of Single-Leg Bending Delamination of Composite Laminates Using a Nonlinear Cohesive Model. J. Fail. Anal. Prev. 15(6), 846–852 (2015)
O. Allix, A. Corigliano, Geometrical and Interfacial Non-linearities in the Analysis of Delamination in Composites. Int. J. Solids Struct. 36(15), 2189–2216 (1999)
P. Camanho, F. Matthews, Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates. J. Compos. Mater. 33(10), 906–927 (1999)
C.G. Davila, E.R. Johnson, Analysis of Delamination Initiation in Postbuckled Dropped-ply Laminates. AIAA J. 31(4), 721–727 (1993)
M. De Moura, J. Gonçalves, A. Marques, P. De Castro, Prediction of Compressive Strength of Carbon–Epoxy Laminates Containing Delamination by Using a Mixed-Mode Damage Model. Compos. Struct. 50(2), 151–157 (2000)
R. Kim, S. Soni, Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites. J. Compos. Mater. 18(1), 70–80 (1984)
E. Reedy, F. Mello, T. Guess, Modeling the Initiation and Growth of Delaminations in Composite Structures. J. Compos. Mater. 31(8), 812–831 (1997)
P. Yayla, Fracture Surface Morphology of Delamination Failure of Polymer Fiber Composites Under Different Failure Modes. J. Fail. Anal. Prev. 16(2), 264–270 (2016)
X.K. Li, P.F. Liu, Delamination Analysis of Carbon Fiber Composites Under Dynamic Loads Using Acoustic Emission. J. Fail. Anal. Prev. 16(1), 142–153 (2016)
C.H. Wang, Introduction to Fracture Mechanics (DSTO Aeronautical and Maritime Research Laboratory, Melbourne, 1996)
E. Hearn, Mechanics of Materials, Vols. 1–2 (Pergamon Press, Oxford, 1985)
B.J. Goodno, J.M. Gere, Mechanics of Materials (Cengage Learning, Boston, 2016)
D.S. Dugdale, Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)
G.I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 7, 55–129 (1962)
M.K. Hassan, Y. Mohammed, T. Salem, A. Hashem, Prediction of Nominal Strength of Composite Structure Open Hole Specimen Through Cohesive Laws. Int. J. Mech. Mech. Eng. IJMME-IJENS 12, 1–9 (2012)
Y. Mohammed, M.K. Hassan, H. Abu El-Ainin, A. Hashem, Size Effect Analysis in Laminated Composite Structure Using General Bilinear Fit. Int. J. Nonlinear Sci. Numer. Simul. 14(3–4), 217–224 (2013)
Y. Mohammed, M.K. Hassan, H.A. El-Ainin, A. Hashem, Size Effect Analysis of Open-Hole Glass Fiber Composite Laminate Using Two-Parameter Cohesive Laws. Acta Mech. 226(4), 1027–1044 (2015)
A. Standard, D5528-94a, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Continuous Fiber Reinforced Polymer Matrix Composites, Philadelphia, PA, USA (1994)
M. Ramamurthi, J.-S. Lee, S.-H. Yang, Y.-S. Kim, Delamination Characterization of Bonded Interface in polymer Coated Steel Using Surface Based Cohesive Model. Int. J. Precis. Eng. Manuf. 14(10), 1755–1765 (2013)
A. Version, 6.9. 1, User Documentation (2009)
J. Planas, Z. Bažant, M. Jirásek, Reinterpretation of Karihaloo’s Size Effect Analysis for Notched Quasibrittle Structures. Int. J. Fract. 111(1), 17–28 (2001)
C. Soutis, N. Fleck, P. Smith, Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes. J. Compos. Mater. 25(11), 1476–1498 (1991)
J. Bieniaś, H. Dębski, B. Surowska, T. Sadowski, Analysis of Microstructure Damage in Carbon/Epoxy Composites Using FEM. Comput. Mater. Sci. 64, 168–172 (2012)
A. Turon, C.G. Davila, P.P. Camanho, J. Costa, An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)
T.L. Anderson, T. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 2005)
P.P. Camanho, P. Maimí, C. Dávila, Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)
P. Maimí, P.P. Camanho, J. Mayugo, C. Dávila, A Continuum Damage Model for Composite Laminates: Part II—Computational Implementation and Validation. Mech. Mater. 39(10), 909–919 (2007)
M.Y. Abdellah, M.K. Hassan, Numerical Analysis of Open Hole Specimen Glass Fiber Reinforced Polymer. Nonlinear Eng. 3(3), 141–147 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abdellah, M.Y. Delamination Modeling of Double Cantilever Beam of Unidirectional Composite Laminates. J Fail. Anal. and Preven. 17, 1011–1018 (2017). https://doi.org/10.1007/s11668-017-0324-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11668-017-0324-1
Keywords
- Fracture toughness
- Delamination
- DCB
- Cohesive surface
- Crack propagation