Skip to main content

Delamination Modeling of Double Cantilever Beam of Unidirectional Composite Laminates

Abstract

Delamination crack growth in a double cantilever beam laminated composites is modeled by using simple stress analysis beam theory combined with simple linear elastic fracture mechanics and consideration of the theory of elastic failure in mechanics of material. Furthermore, advanced finite element (FE) model is built up. The FE approach employs surface cohesive zone model that is used to simulate the debonding and crack propagation. The analytical modeling, moreover, cracks growth and strain measurements, which are obtained from FE models, are compared with the available published experimental work. The predicted results give good agreement with interlaminar fracture toughness and maximum load which correspond to crack initiation point. The FE models results agree well with the available experimental data for both crack initiation and propagation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

\(\sigma_{\text{co}}\) :

Cohesive stress

G IC :

Mode I surface release energy or fracture toughness

F :

The load at the end of arm

E :

The Young’s modulus

I :

The second moment of area

b :

Beam width

h :

Beam thickness

v :

Total vertical displacement

u :

Half displacement

C :

Compliance

\(\partial A\) :

Crack extension area

\(\sigma_{\text{b}}\) :

Bending stress

Y :

Distance from point load at crack tip

U E :

Stored elastic energy

M(x):

Bending moment in x axis plane

G :

Surface release energy

\(\sigma_{\text{u}}\) :

Un-notch tensile strength

X t :

Transverse tensile strength

E eff :

Effective Young’s modulus

K eff :

Effective stiffness

\(\delta_{\text{o}}\) :

Critical initiation traction–separation displacement

\(\delta_{\text{f}}\) :

Critical crack opening

t n :

Normal contact stress

t s :

Shear contact stress

t t :

Traction contact stress

G IC, G IIC, and G IIIC :

Mode I, II, and III surface release energy

References

  1. P.P. Camanho, C. Davila, M. De Moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  2. V. La Saponara, H. Muliana, R. Haj-Ali, G.A. Kardomateas, Experimental and Numerical Analysis of Delamination Growth in Double Cantilever Laminated Beams. Eng. Fract. Mech. 69(6), 687–699 (2002)

    Article  Google Scholar 

  3. A.C. Garg, Delamination—A Damage Mode in Composite Structures. Eng. Fract. Mech. 29(5), 557–584 (1988)

    Article  Google Scholar 

  4. V.V. Bolotin, Delaminations in Composite Structures: Its Origin, Buckling, Growth and Stability. Compos. Part B Eng. 27(2), 129–145 (1996)

    Article  Google Scholar 

  5. S.T. Pinho, Modelling Failure of Laminated Composites Using Physically-Based Failure Models (Imperial College London (University of London), London, 2005)

    Google Scholar 

  6. S. Pinho, L. Iannucci, P. Robinson, Formulation and Implementation of Decohesion Elements in an Explicit Finite Element Code. Compos. Part A Appl. Sci. Manuf. 37(5), 778–789 (2006)

    Article  Google Scholar 

  7. J.C. Sosa, N. Karapurath, Delamination Modelling of GLARE Using the Extended Finite Element Method. Compos. Sci. Technol. 72(7), 788–791 (2012)

    Article  Google Scholar 

  8. Y. Mohammed, M.K. Hassan, A. Hashem, Analytical Model to Predict Multiaxial Laminate Fracture Toughness from 0 ply Fracture Toughness. Polym. Eng. Sci. 54(1), 234–238 (2014)

    Article  Google Scholar 

  9. Y. Mohammed, K. Mohamed, A. Hashem, Finite Element Computational Approach of Fracture Toughness in Composite Compact-Tension Specimens. Int. J. Mech. Mechatron. Eng. 12(4), 57–61 (2010)

    Google Scholar 

  10. F. Greco, P. Lonetti, R. Zinno, An Analytical Delamination Model for Laminated Plates Including Bridging Effects. Int. J. Solids Struct. 39(9), 2435–2463 (2002)

    Article  Google Scholar 

  11. P. Liu, Z. Gu, Finite Element Analysis of Single-Leg Bending Delamination of Composite Laminates Using a Nonlinear Cohesive Model. J. Fail. Anal. Prev. 15(6), 846–852 (2015)

    Article  Google Scholar 

  12. O. Allix, A. Corigliano, Geometrical and Interfacial Non-linearities in the Analysis of Delamination in Composites. Int. J. Solids Struct. 36(15), 2189–2216 (1999)

    Article  Google Scholar 

  13. P. Camanho, F. Matthews, Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates. J. Compos. Mater. 33(10), 906–927 (1999)

    Article  Google Scholar 

  14. C.G. Davila, E.R. Johnson, Analysis of Delamination Initiation in Postbuckled Dropped-ply Laminates. AIAA J. 31(4), 721–727 (1993)

    Article  Google Scholar 

  15. M. De Moura, J. Gonçalves, A. Marques, P. De Castro, Prediction of Compressive Strength of Carbon–Epoxy Laminates Containing Delamination by Using a Mixed-Mode Damage Model. Compos. Struct. 50(2), 151–157 (2000)

    Article  Google Scholar 

  16. R. Kim, S. Soni, Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites. J. Compos. Mater. 18(1), 70–80 (1984)

    Article  Google Scholar 

  17. E. Reedy, F. Mello, T. Guess, Modeling the Initiation and Growth of Delaminations in Composite Structures. J. Compos. Mater. 31(8), 812–831 (1997)

    Article  Google Scholar 

  18. P. Yayla, Fracture Surface Morphology of Delamination Failure of Polymer Fiber Composites Under Different Failure Modes. J. Fail. Anal. Prev. 16(2), 264–270 (2016)

    Article  Google Scholar 

  19. X.K. Li, P.F. Liu, Delamination Analysis of Carbon Fiber Composites Under Dynamic Loads Using Acoustic Emission. J. Fail. Anal. Prev. 16(1), 142–153 (2016)

    Article  Google Scholar 

  20. C.H. Wang, Introduction to Fracture Mechanics (DSTO Aeronautical and Maritime Research Laboratory, Melbourne, 1996)

    Google Scholar 

  21. E. Hearn, Mechanics of Materials, Vols. 1–2 (Pergamon Press, Oxford, 1985)

    Google Scholar 

  22. B.J. Goodno, J.M. Gere, Mechanics of Materials (Cengage Learning, Boston, 2016)

    Google Scholar 

  23. D.S. Dugdale, Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  24. G.I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  Google Scholar 

  25. M.K. Hassan, Y. Mohammed, T. Salem, A. Hashem, Prediction of Nominal Strength of Composite Structure Open Hole Specimen Through Cohesive Laws. Int. J. Mech. Mech. Eng. IJMME-IJENS 12, 1–9 (2012)

    Google Scholar 

  26. Y. Mohammed, M.K. Hassan, H. Abu El-Ainin, A. Hashem, Size Effect Analysis in Laminated Composite Structure Using General Bilinear Fit. Int. J. Nonlinear Sci. Numer. Simul. 14(3–4), 217–224 (2013)

    Google Scholar 

  27. Y. Mohammed, M.K. Hassan, H.A. El-Ainin, A. Hashem, Size Effect Analysis of Open-Hole Glass Fiber Composite Laminate Using Two-Parameter Cohesive Laws. Acta Mech. 226(4), 1027–1044 (2015)

    Article  Google Scholar 

  28. A. Standard, D5528-94a, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Continuous Fiber Reinforced Polymer Matrix Composites, Philadelphia, PA, USA (1994)

  29. M. Ramamurthi, J.-S. Lee, S.-H. Yang, Y.-S. Kim, Delamination Characterization of Bonded Interface in polymer Coated Steel Using Surface Based Cohesive Model. Int. J. Precis. Eng. Manuf. 14(10), 1755–1765 (2013)

    Article  Google Scholar 

  30. A. Version, 6.9. 1, User Documentation (2009)

  31. J. Planas, Z. Bažant, M. Jirásek, Reinterpretation of Karihaloo’s Size Effect Analysis for Notched Quasibrittle Structures. Int. J. Fract. 111(1), 17–28 (2001)

    Article  Google Scholar 

  32. C. Soutis, N. Fleck, P. Smith, Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes. J. Compos. Mater. 25(11), 1476–1498 (1991)

    Article  Google Scholar 

  33. J. Bieniaś, H. Dębski, B. Surowska, T. Sadowski, Analysis of Microstructure Damage in Carbon/Epoxy Composites Using FEM. Comput. Mater. Sci. 64, 168–172 (2012)

    Article  Google Scholar 

  34. A. Turon, C.G. Davila, P.P. Camanho, J. Costa, An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  35. T.L. Anderson, T. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 2005)

    Google Scholar 

  36. P.P. Camanho, P. Maimí, C. Dávila, Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics. Compos. Sci. Technol. 67(13), 2715–2727 (2007)

    Article  Google Scholar 

  37. P. Maimí, P.P. Camanho, J. Mayugo, C. Dávila, A Continuum Damage Model for Composite Laminates: Part II—Computational Implementation and Validation. Mech. Mater. 39(10), 909–919 (2007)

    Article  Google Scholar 

  38. M.Y. Abdellah, M.K. Hassan, Numerical Analysis of Open Hole Specimen Glass Fiber Reinforced Polymer. Nonlinear Eng. 3(3), 141–147 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Y. Abdellah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdellah, M.Y. Delamination Modeling of Double Cantilever Beam of Unidirectional Composite Laminates. J Fail. Anal. and Preven. 17, 1011–1018 (2017). https://doi.org/10.1007/s11668-017-0324-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0324-1

Keywords

  • Fracture toughness
  • Delamination
  • DCB
  • Cohesive surface
  • Crack propagation