Journal of Failure Analysis and Prevention

, Volume 17, Issue 5, pp 919–934 | Cite as

Stress Intensity Factor K I and T-Stress Determination in HDPE Material

  • Mohammed A. Bouchelarm
  • Mohamed Mazari
  • Noureddine Benseddiq
Technical Article---Peer-Reviewed

Abstract

For the characterization of high-density polyethylene (HDPE) pipes according to the operating conditions, the Nol ring test is an adequate method to rapidly and inexpensively determine the mechanical properties with good effectiveness. In this work, Nol ring tests will be carried out on HDPE material with different crack depth ratios. Based on these results, the brittle fracture of HDPE will be studied and a new experimental technique for measuring stress intensity factor (SIF) and T-stress under mode I conditions is developed. The formulation of the normal strains, close to the crack tip, is given using the first five terms of the generalized Westergaard formulation. Then, in a second step, these formulations are applied to analytically determine the optimum locations for the rectangular rosette to eliminate the errors due to higher order terms of the asymptotic expansion.

Keywords

High-density polyethylene Nol ring test Fracture Stress intensity factor T-stress 

List of symbols

a

Crack length

An, Bm

Coefficients of Williams infinite series

D0, D

Internal and external diameter of the pipe

E

Young’s modulus

F

Load

KI

Mode I stress intensity factor

P(r, θ)

Location of the strain gages

(r, θ)

Radial and angular distance from the crack tip located at point P

S0

Initial cross section of the ring specimen

t

Pipe wall thickness

T

T-stress

w

Half width of the CCP specimen

x, y, z

Cartesian coordinates components

α

Orientation angle of the rosette with respect to the crack axis

\(\varepsilon_{xx} ,\varepsilon_{yy}\)

Normal strains in x and y direction

\(\varepsilon_{rr} ,\varepsilon_{\theta \theta }\)

Normal strains in relative to a rotated coordinate system (x′, y′)

\(\gamma_{r\theta }\)

Shear strain in x-y plane

ν

Poisson’s ratio

\(\mu\)

Shear modulus

\(\sigma_{xx} ,\sigma_{yy} ,\tau_{xy}\)

The stress components in x and y directions

CCP

Central cracked plate

HDPE

High-density polyethylene

SIF

Stress intensity factor

References

  1. 1.
    ISO 6259: Thermoplastic Pipes-Determination of Tensile PropertiesPart 3: Polyolefin Pipes (1997)Google Scholar
  2. 2.
    I. ISO 6259: Thermoplastic Pipes-Determination of Tensile PropertiesPart 1: General Test Method (1997)Google Scholar
  3. 3.
    Metallic Materials Tube Ring Expanding Test, International Standard ISO 8495-8496Google Scholar
  4. 4.
    ASTM D2290-12: Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disk Method. ASTM International, West Conshohocken, PA, 2016. www.astm.org
  5. 5.
    S. Arsène, J. Bai, A new approach to measuring transverse properties of structural tubing by a ring test. J. Test. Eval. 24(6), 386–391 (1996)CrossRefGoogle Scholar
  6. 6.
    S. Arsène, J. Bai, A new approach to measuring transverse properties of structural tubing by a ring test—experimental investigation. J. Test. Eval. 26(1), 26–30 (1998)CrossRefGoogle Scholar
  7. 7.
    R. Mehan, L. Jackson, M.R. Rairden, J.R. Rairden, W. Carter, The use of a ring tensile test to evaluate plasma-deposited materials. J. Mater. Sci. 22(12), 4478–4483 (1987)CrossRefGoogle Scholar
  8. 8.
    C. Kaynak, E.S. Erdiller, L. Parnas, F. Senel, Use of split-disk tests for the process parameters of filament wound epoxy composite tubes. Polym. Test. 24(5), 648–655 (2005)CrossRefGoogle Scholar
  9. 9.
    S. Kim, J. Bang, D. Kim, I. Lim, Y. Yang, K. Song, D. Kim, Hoop strength and ductility evaluation of irradiated fuel cladding. Nucl. Eng. Des. 239(2), 254–260 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Sanchez, S. Louis, C.-E. Bruzek, M. Rozental-Evesque, K.G.B. Rabaud, Development of a “Nol Ring” test to study polyethylene pipe degradation and its implementation on field house connection pipes, in: Proceedings of the Edinburgh International Conference Centre, United Kingdom (2008)Google Scholar
  11. 11.
    ASTM D1559-05: Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings (ASTM International, West Conshohocken, PA, 2005). www.astm.org
  12. 12.
    M. Rozental-Evesque, B. Rabaud, M. Sanchez, S. Louis, C.-E. Bruzek, The Nol Ring test: an improved tool for characterising the mechanical degradation of non-failed polyethylene pipes house connections, in Proceedings of Plastic Pipes Congress, Budapest, Hungary, pp. 22–24 (2008)Google Scholar
  13. 13.
    L. Laiarinandrasana, C. Devilliers, S. Oberti, E. Gaudichet, B. Fayolle, J. Lucatelli, Ring tests on high-density polyethylene: full investigation assisted by finite element modelling. Int. J. Press. Vessels Pip. 88(1), 1–10 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, P.Y. Ben Jar, Quantitative assessment of deformation-induced damage in polyethylene pressure pipe. Polym. Test. 47, 42–50 (2015)CrossRefGoogle Scholar
  15. 15.
    T.M.A.A. EL-Bagory, T.A.R. Alkanhal, M.Y.A. Younan, Effect of specimen geometry on the predicted mechanical behavior of polyethylene pipe material. J. Press. Vessels Technol. 137(6), 061202 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Laiarinandrasana, C. Devilliers, J.M. Lucatelli, E. Gaudichet-Maurin, J.M. Brossard, Experimental study of the crack depth ratio threshold to analyze the slow crack growth by creep of high density polyethylene pipes. Int. J. Press. Vessels Pip. 122, 22–30 (2014)CrossRefGoogle Scholar
  17. 17.
    M.L. Williams, On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 109–114 (1957)Google Scholar
  18. 18.
    Y.J. Chao, S. Liu, B.J. Broviak, Brittle fracture: variation of fracture toughness with constraint and crack curving under mode I conditions. Exp. Mech. 41(3), 232–241 (2001)CrossRefGoogle Scholar
  19. 19.
    Richardson, D.E., Goree, J.G.: Experimental verification of a new two-parameter fracture model, in Fracture Mechanics: Twenty-Third Symposium (ASTM International, 1993), pp. 738–750Google Scholar
  20. 20.
    G.R. Irwin: Discussion of the dynamic stress distribution surrounding a running crack—a photoelastic analysis, in: Proceedings of the Society for Experimental Stress Analysis, vol. 16, no. 1 (1957), pp. 93–96Google Scholar
  21. 21.
    S.G. Larsson, A. Carlsson, Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack-tips in elastic–plastic materials. J. Mech. Phys. Solids 21(4), 263–277 (1973)CrossRefGoogle Scholar
  22. 22.
    J.R. Rice, Limitations to the small scale yielding approximation for crack tip plasticity. J. Mech. Phys. Solids 22(1), 17–26 (1974)CrossRefGoogle Scholar
  23. 23.
    B. Cotterell, Notes on the paths and stability of cracks. Int. J. Fract. 2(3), 526–533 (1966)CrossRefGoogle Scholar
  24. 24.
    S. Melin, The influence of the T-stress on the directional stability of cracks. Int. J. Fract. 114(3), 259–265 (2002)CrossRefGoogle Scholar
  25. 25.
    T. Fett, D. Munz, T-stress and crack path stability of DCDC specimens. Int. J. Fract. 124, L165–L170 (2003)CrossRefGoogle Scholar
  26. 26.
    R.J. Sanford, Principles of Fracture Mechanics (Prentice Hall, New York, 2003)Google Scholar
  27. 27.
    R.M. Bonesteel, D.E. Piper, A.T. Davinroy, Compliance and KI calibration of double cantilever beam (DCB) specimens. Eng. Fract. Mech. 10(2), 425–428 (1978)CrossRefGoogle Scholar
  28. 28.
    J.C. Newman, Stress-intensity factors and crack-opening displacements for round compact specimens. Int. J. Fract. 17(6), 567–578 (1981)CrossRefGoogle Scholar
  29. 29.
    E.E. Gdoutos, P.S. Theocaris, A photoelastic determination of mixed-mode stress-intensity factors. Exp. Mech. 18(3), 87–96 (1978)CrossRefGoogle Scholar
  30. 30.
    T.H. Hyde, N.A. Warrior, An improved method for the determination of photoelastic stress intensity factors using the Westergaard stress function. Int. J. Mech. Sci. 32(3), 265–273 (1990)CrossRefGoogle Scholar
  31. 31.
    M. Mahinfalah, L. Zackery, Photoelastic determination of mixed mode stress intensity factors for sharp reentrant corners. Eng. Fract. Mech. 52(4), 639–645 (1995)CrossRefGoogle Scholar
  32. 32.
    P.S. Theocaris, Local yielding around a crack tip in plexiglas. J. Appl. Mech. : ASME 37, 409–415 (1970)CrossRefGoogle Scholar
  33. 33.
    M. Konsta-Gdoutos, Limitations in mixed-mode stress intensity factor evaluation by the method of caustics. Eng. Fract. Mech. 55(3), 371–382 (1996)CrossRefGoogle Scholar
  34. 34.
    X.F. Yao, W. Xu, M.Q. Xu, K. Arakawa, T. Mada, K. Takahashi, Experimental study of dynamic fracture behavior of PMMA with overlapping offset-parallel cracks. Polym. Test. 22(6), 663–670 (2003)CrossRefGoogle Scholar
  35. 35.
    W. Xu, X.F. Yao, M.Q. Xu, G.C. Jin, H.Y. Yeh, Fracture characterizations of V-notch tip in PMMA polymer material. Polym. Test. 23(5), 509–515 (2004)CrossRefGoogle Scholar
  36. 36.
    W. Liu, S. Wang, X. Yao, Experimental study on stress intensity factor for an axial crack in a PMMA cylindrical shell. Polym. Test. 56, 36–44 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Zhongwen, S. Yao, Y. Renshu, Y. Qiang, Comparison of caustics and the strain gage method for measuring mode I stress intensity factor of PMMA material. Polym. Test. 59, 10–19 (2017)CrossRefGoogle Scholar
  38. 38.
    J.W. Dally, R.J. Sanford, Strain-gage methods for measuring the opening-mode stress intensity factor, KI. Exp. Mech. 27(4), 381–388 (1987)CrossRefGoogle Scholar
  39. 39.
    S. Swamy, M.V. Srikanth, K.S.R.K. Murthy, P.S. Robi, Determination of complex stress intensity factors of complex configurations using strain gages. J. Mech. Mater. Struct. 3(7), 1239–1255 (2008)CrossRefGoogle Scholar
  40. 40.
    M.Y. Dehnavi, S. Khaleghian, A. Emami, M. Tehrani, N. Soltani, Utilizing digital image correlation to determine stress intensity factors. Polym. Test. 37, 28–35 (2014)CrossRefGoogle Scholar
  41. 41.
    I. Eshraghi, M.R.Y. Dehnavi, N. Soltani, Effect of subset parameters selection on the estimation of mode-I stress intensity factor in a cracked PMMA specimen using digital image correlation. Polym. Test. 37, 193–200 (2014)CrossRefGoogle Scholar
  42. 42.
    R.J. Sanford, A critical re-examination of the Westergaard method for solving opening-mode crack problems. Mech. Res. Commun. 6(5), 289–294 (1979)CrossRefGoogle Scholar
  43. 43.
    J.W. Dally, J.R. Berger, A strain gage method for determining KI and KII in a mixed mode stress field, in The Proceedings of the 1986 SEM Spring Conference on Experimental Mechanics. New Orleans, LA (1986), pp. 603–612Google Scholar
  44. 44.
    J.W. Dally, D.B. Barker, Dynamic measurements of initiation toughness at high loading rates. Exp. Mech. 28(3), 298–303 (1988)CrossRefGoogle Scholar
  45. 45.
    A. Shukla, B.D. Agarwal, B. Bhushan, Determination of stress intensity factor in orthotropic composite materials using strain gages. Eng. Fract. Mech. 32(3), 469–477 (1989)CrossRefGoogle Scholar
  46. 46.
    S.K. Khanna, A. Shukla, Development of stress field equations and determination of stress intensity factor during dynamic fracture of orthotropic composite materials. Eng. Fract. Mech. 47(3), 345–359 (1994)CrossRefGoogle Scholar
  47. 47.
    J. Wei, J.H. Zhao, A two-strain-gage technique for determining mode I stress intensity factor. Theor. Appl. Fract. Mech. 28(2), 135–140 (1997)CrossRefGoogle Scholar
  48. 48.
    J.H. Kuang, L.S. Chen, A single strain gage method for KI measurement. Eng. Fract. Mech. 51(5), 871–908 (1995)CrossRefGoogle Scholar
  49. 49.
    A. Dorogoy, D. Rittel, Optimum location of a three strain gauge rosette for measuring mixed mode stress intensity factors. Exp. Mech. 75(14), 4127–4139 (2008)Google Scholar
  50. 50.
    H. Sarangi, K.S.R.K. Murthy, D. Chakraborty, Radial locations of strain gages for accurate measurement of mode I stress intensity factor. Mater. Des. 31(6), 2840–2850 (2010)CrossRefGoogle Scholar
  51. 51.
    H. Sarangi, K.S.R.K. Murthy, D. Chakraborty, Optimum strain gage location for evaluating stress intensity factors in single and double ended cracked configurations. Eng. Fract. Mech. 77(16), 3190–3203 (2010)CrossRefGoogle Scholar
  52. 52.
    H. Sarangi, K.S.R.K. Murthy, D. Chakraborty, Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors. Eng. Fract. Mech. 110, 189–200 (2013)CrossRefGoogle Scholar
  53. 53.
    P.S. Leevers, J.C. Radon, Inherent stress biaxiality in various fracture specimen geometries. Int. J. Fract. 19(4), 311–325 (1982)CrossRefGoogle Scholar
  54. 54.
    A.P. Kfouri, Some evaluations of the elastic T-term using Eshelby’s method. Int. J. Fract. 30(4), 301–315 (1986)CrossRefGoogle Scholar
  55. 55.
    T.L. Sham, The theory of higher order weight functions for linear elastic plane problems. Int. J. Solids Struct. 25(4), 357–380 (1989)CrossRefGoogle Scholar
  56. 56.
    T.L. Sham, The determination of the elastic T-term using higher order weight functions. Int. J. Fract. 48(2), 81–102 (1991)CrossRefGoogle Scholar
  57. 57.
    Y.Y. Wang, D.M. Parks, Evaluation of the elastic T-stress in surface-cracked plates using the line-spring method. Int. J. Fract. 56(1), 25–40 (1992)CrossRefGoogle Scholar
  58. 58.
    T. Nakamura, D.M. Parks, Determination of elastic T-stress along three-dimensional crack fronts using interaction integral. Int. J. Solids Struct. 29(13), 1597–1611 (1992)CrossRefGoogle Scholar
  59. 59.
    B.S. Henry, A.R. Luxmoore, Three-dimensional evaluation of the T-stress in centre cracked plates. Int. J. Fract. 70(1), 35–50 (1995)CrossRefGoogle Scholar
  60. 60.
    B. Yang, K. Ravi-Chandar, Evaluation of elastic T-stress by stress difference method. Eng. Fract. Mech. 64(5), 589–601 (1999)CrossRefGoogle Scholar
  61. 61.
    M.R. Ayatolahi, M.J. Pavier, D.J. Smith, Determination of T-stress from finite element analysis for mode I and mixed mode I/II loading. Int. J. Fract. 91(3), 283–298 (1998)CrossRefGoogle Scholar
  62. 62.
    M.J. Maleski, M.S. Kirugulige, H.V. Tippur, A method for measuring mode I crack tip constraint under static and dynamic loading conditions. Exp. Mech. 44(5), 522–532 (2004)CrossRefGoogle Scholar
  63. 63.
    M. Zanganeh, R.A. Tomlinson, J.R. Yates, T-stress determination using thermoelastic stress analysis. J. Strain Anal. Eng. 43(6), 529–537 (2008)CrossRefGoogle Scholar
  64. 64.
    M. Hadj Meliani, Z. Azari, G. Pluvinage, Y.G. Matvienko, The effective T-stress estimation and crack paths emanating from U-notches. Eng. Fract. Mech. 77(11), 1682–1692 (2010)CrossRefGoogle Scholar
  65. 65.
    X. Wang, Elastic T-stress for cracks in test specimens subjected to non-uniform stress distributions. Eng. Fract. Mech. 69(12), 1339–1352 (2002). doi: 10.1016/S0013-7944(01)00149-7 CrossRefGoogle Scholar
  66. 66.
    X. Wang, Elastic T-stress solutions for penny-shaped cracks under tension and bending. Eng. Fract. Mech. 71(16), 2283–2298 (2004). doi: 10.1016/j.engfracmech.2004.02.001 CrossRefGoogle Scholar
  67. 67.
    X. Wang, Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness plates. Eng. Fract. Mech. 70(6), 731–756 (2003). doi: 10.1016/S0013-7944(02)00081-4 CrossRefGoogle Scholar
  68. 68.
    M.R. Ayatollahi, M. Nejati, An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis. Fatigue Fract. Eng. Mater. Struct. 34(3), 159–176 (2011). doi: 10.1111/j.1460-2695.2010.01504.x CrossRefGoogle Scholar
  69. 69.
    M.R. Ayatollahi, M. Nejati, Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method. Int. J. Mech. Sci. 53(3), 164–177 (2011). doi: 10.1016/j.ijmecsci.2010.12.005 CrossRefGoogle Scholar
  70. 70.
    M.R. Ayatollahi, M. Moazzami, Digital image correlation method for calculating coefficients of Williams expansion in compact tension specimen. Opt. Lasers Eng. 90, 26–33 (2017). doi: 10.1016/j.optlaseng.2016.09.011 CrossRefGoogle Scholar
  71. 71.
    Y.G. Matvienko, V.S. Pisarev, S.I. Eleonsky, A.V. Chernov, Determination of fracture mechanics parameters by measurements of local displacements due to crack length increment. Fatigue Fract. Eng. Mater. Struct. 37(12), 1306–1318 (2014). doi: 10.1111/ffe.12195 CrossRefGoogle Scholar
  72. 72.
    V.S. Pisarev, Y.G. Matvienko, S.I. Eleonsky, I.N. Odintsev, Combining the crack compliance method and speckle interferometry data for determination of stress intensity factors and T-stresses. Eng. Fract. Mech. 179, 348–374 (2017). doi: 10.1016/j.engfracmech.2017.04.029 CrossRefGoogle Scholar
  73. 73.
    F. Berto, P. Lazzarin, On higher order terms in the crack tip stress field. Int. J. Fract. 161(2), 221–226 (2010). doi: 10.1007/s10704-010-9443-3 CrossRefGoogle Scholar
  74. 74.
    F. Berto, P. Lazzarin, Multiparametric full-field representations of the in-plane stress fields ahead of cracked components under mixed mode loading. Int. J. Fatigue 46, 16–26 (2013). doi: 10.1016/j.ijfatigue.2011.12.004 CrossRefGoogle Scholar
  75. 75.
    P. Lazzarin, F. Berto, D. Radaj, Fatigue-relevant stress field parameters of welded lap joints: pointed slit tip compared with keyhole notch. Fatigue Fract. Eng. Mater. Struct. 32(9), 713–735 (2009). doi: 10.1111/j.1460-2695.2009.01379.x CrossRefGoogle Scholar
  76. 76.
    A. Campagnolo, G. Meneghetti, F. Berto, Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution. Fatigue Fract. Eng. Mater. Struct. 39(8), 982–998 (2016). doi: 10.1111/ffe.12439 CrossRefGoogle Scholar
  77. 77.
    O. Bouledroua, M. Hadj Meliani, G. Pluvinage, Assessment of pipe defects using a constraint-modified failure assessment diagram. J. Fail. Anal. Prev. 17(1), 144–153 (2017). doi: 10.1007/s11668-016-0221-z CrossRefGoogle Scholar
  78. 78.
    H. Moustabchir, Z. Azari, S. Hariri, I. Dmytrakh, Experimental and computed stress distribution ahead of a notch in a pressure vessel: application of T-stress conception. Comput. Mater. Sci. 58, 59–66 (2012). doi: 10.1016/j.commatsci.2012.01.029 CrossRefGoogle Scholar
  79. 79.
    M. Hadj Meliani, Z. Azari, M. Al-Qadhi, N. Merah, G. Pluvinage, A two-parameter approach to assessing notch fracture behaviour in clay/epoxy nanocomposites. Compos. Part B Eng. 80, 126–133 (2015). doi: 10.1016/j.compositesb.2015.05.034 CrossRefGoogle Scholar
  80. 80.
    M. Ben Amara, J. Capelle, Z. Azari, G. Pluvinage, Use of a ring DWTT specimen for determination of steel NDT from pipe of diameter less than DN500. J. Fail. Anal. Prev. 16(6), 941–950 (2016). doi: 10.1007/s11668-016-0194-y CrossRefGoogle Scholar
  81. 81.
    L. Alimi, W. Ghabeche, W. Chaoui, K. Chaoui, Étude des propriétés mécaniques à travers la paroi d’un tube HDPE-80 extrudé destiné à la distribution du gaz naturel. Matériaux & Techniques 100(1), 79–86 (2012)CrossRefGoogle Scholar
  82. 82.
    J. Rosakis, K. Ravi-Chandar, On crack-tip stress state: an experimental evaluation of three-dimensional effects. Int. J. Solids Struct. 22(2), 121–134 (1986)CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Mohammed A. Bouchelarm
    • 1
    • 2
  • Mohamed Mazari
    • 1
  • Noureddine Benseddiq
    • 2
  1. 1.Laboratoire de Matériaux et Systèmes Réactifs- LMSRUniversité Djillali LiabesSidi Bel-AbbesAlgeria
  2. 2.FRE 3723 - LML - Laboratoire de Mécanique de LilleUniv. LilleLilleFrance

Personalised recommendations