Journal of Failure Analysis and Prevention

, Volume 17, Issue 3, pp 440–449 | Cite as

Contribution to the Improvement of the MADS–MOSAR Method for the Modeling of Domino Effects

Technical Article---Peer-Reviewed
  • 74 Downloads

Abstract

In the literature, many studies have outlined the main existing methods and software tools used for the study and analysis of domino effects. One of these is the MADS–MOSAR model, which provides a schematic representation of the process of domino effects in the form of black boxes. The exploitation of these boxes for the deduction of short and long scenarios is based on the experience of the users of this model. Hence, the difficulty encountered by some practitioners of the model MADS–MOSAR not experienced for the modeling of domino effects. To overcome this difficulty, this paper presents a modeling of black boxes of the MADS–MOSAR model in the form of networks which allow a better exploration of the “Source-Flow-Target” triptych that intervene in the process of domino effects.

Keywords

Domino effect Modeling MADS–MOSAR SFT Networks 

References

  1. 1.
    F.-P. Lees, Loss Prevention in the Process Industries, vol. 1–2 (Butterworth-Heinemann, Oxford, 1980)Google Scholar
  2. 2.
    F.-P. Lees, Loss Prevention in the Process Industries, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)Google Scholar
  3. 3.
    C. Delvosalle, Domino effects phenomena: definition, overview and classification, European seminar on domino effects. in Leuven, Belgium, Federal Ministry of Employment, Safety Administration, Direction Chemical Risks (Brussels, Belgium, 1996), pp. 5–15Google Scholar
  4. 4.
    D.F. Bagster, R.M. Pitblado, The estimation of domino incident frequencies—an approach. Process Saf. Environ. Prot. 69(4), 195–199 (1991)Google Scholar
  5. 5.
    J. Gledhill, L. Lines, Development of Methods to Assess the Significance of Domino Effects from Major Hazard Sites, CR Report 183. Health and Safety Executive (1998)Google Scholar
  6. 6.
    V. Cozzani, E. Salzano, Threshold values for domino effects caused by blast wave interaction with process equipment. J. Loss Prev. Process Ind. 17(6), 437–447 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Kadri, E. Châtelet, Domino effect analysis and assessment of industrial sites: a review of methodologies and software tools. J. Comput. Distrib. Syst. 2(3), 1–10 (2013)Google Scholar
  8. 8.
    M. Smaiah, L. Bahmed, For an environmental risk management approach applied in Algerian ports: the case of Bethioua port (Algeria). J. Environ. Eng. 8(1), 1–12 (2017)Google Scholar
  9. 9.
    N.A. Leveson, New accident model for engineering safer systems. J. Saf. Sci. 42(4), 237–270 (2004)CrossRefGoogle Scholar
  10. 10.
    V.L. Bertalanffy, General Systems Theory, Foundation, Development, Applications (George Braziller Inc, New York, 1969)Google Scholar
  11. 11.
    F. Munos, L. Perrin, M. Sardin, J.P. Josien, The approach MADS/MOSAR to manage the triptych “technology/normative/management”. in Society for Risk Analysis-Europe 15th Annual Conference. Ljubljana, Slovenia 11–13 September 2006Google Scholar
  12. 12.
    J. Amory, La défense en profondeur d’un système complexe. Principes et méthodologie de référence. In Coll. Sciences du risque et du danger. Ed. Lavoisier Tec & Doc., Paris-France (2015)Google Scholar
  13. 13.
    E. Krausmann, F. Mushtaq, A qualitative Natech damage scale for the impact of floods on selected industrial facilities. J. Nat. Hazards 46(2), 179–197 (2008)CrossRefGoogle Scholar
  14. 14.
    L.J. Steinberg, H. Sengul, A.M. Cruz, Natech risk and management: an assessment of the state of the art. J. Nat. Hazards 46(2), 143–152 (2008)CrossRefGoogle Scholar
  15. 15.
    Z. Mohaghegh, A. Mosleh, Incorporating organizational factors into probabilistic risk assessment of complex socio-technical systems: principles and theoretical foundations. J. Saf. Sci. 47(8), 1139–1158 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Piwowar, E. Châtelet, P. Laclémence, An efficient process to reduce infrastructure vulnerabilities facing malevolence. J. Reliab. Eng. Syst. Saf. 94(11), 1869–1877 (2009)CrossRefGoogle Scholar
  17. 17.
    F.I. Khan, S.A. Abbasi, Models for domino effect analysis in chemical process industries. J. Process Saf. Prog. AIChE 17(2), 107–113 (1998)CrossRefGoogle Scholar
  18. 18.
    C.M. Pietersen, Analysis of the LPG disaster in Mexico city. J. Hazard. Mater. 20(1), 85–107 (1988)CrossRefGoogle Scholar
  19. 19.
    F. Kadri, E. Châtelet, G. Chen, Method for quantitative assessment of the domino effect in industrial sites. J. Process Saf. Environ. Prot. 91(6), 452–462 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Latha, G. Gautam, K.V. Raghavan, Strategies for quantification of thermally initiated cascade effects. J. Loss Prev. Process Ind. 5(1), 15–21 (1992)CrossRefGoogle Scholar
  21. 21.
    G. Gubinelli, S. Zanelli, V. Cozzani, A simplified model for the assessment of the impact probability of fragments. J. Hazard. Mater. 116(3), 175–187 (2004)CrossRefGoogle Scholar
  22. 22.
    U. Hauptmanns, A procedure for analyzing the flight of missiles from explosions of cylindrical vessels. J. Loss Prev. Process Ind. 14(5), 395–402 (2001)CrossRefGoogle Scholar
  23. 23.
    Z.-J. Ni, Y. Wang, Z. Yin, Relative risk model for assessing domino effect in chemical process industry. J. Saf. Sci. 87(8), 156–166 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Robert, L. Morabito, C. Debernard, Simulation and anticipation of domino effects among critical infrastructure. J. Crit. Infrastruct. 9(4), 275–303 (2013)CrossRefGoogle Scholar
  25. 25.
    B. Amirhosein, B. Abdolhamidzadeh, T. Abbasi, FREEDOM II: an improved methodology to assess domino effect frequency using simulation techniques. J. Process. Saf. Environ. Prot. 92(6), 714–722 (2014)CrossRefGoogle Scholar
  26. 26.
    C. Delvosalle, C. Fievez, S. Brohez, A methodology and a software (DOMINOXL) for studying domino effects. in 15th International Congress of Chemical and Process Engineering (Praha, Czech Republic, 2002), pp. 25–29Google Scholar
  27. 27.
    INERIS, Méthode pour l’Identification des effets Domino, Rapport final Directiondes Risques Accidentels, Document INERIS-DRA (2002), 25472 (in French)Google Scholar
  28. 28.
    R. Diestel, Graph Theory, 3rd edn, Graduate Texts in Mathematics GTM (Springer, Berlin, 2005)Google Scholar
  29. 29.
    DG-SSE, Référentiel Investigations des Accidents et Incidents du Groupe Sonatrach, direction générale santé, sécurité et environnement (2009), pp. 8–27 (in french)Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Meriem Smaiah
    • 1
  • Mébarek Djebabra
    • 2
  • Lylia Bahmed
    • 3
    • 4
  1. 1.Research Laboratory in Industrial Prevention (LRPI), Institute of Hygiene and Industrial SafetyUniversity of Batna 2BatnaAlgeria
  2. 2.Health and Safety InstituteUniversity of BatnaBatnaAlgeria
  3. 3.Research Laboratory in Industrial Prevention, IHSIUniversity of Batna 2BatnaAlgeria
  4. 4.Research Laboratory in Industrial Prevention, ISHIUniversity of Batna 2BatnaAlgeria

Personalised recommendations