Advertisement

Journal of Failure Analysis and Prevention

, Volume 17, Issue 2, pp 255–261 | Cite as

Development of Reclamation Technology for a Turbo-Shaft Engine

  • Simon K. John
  • R. K. Mishra
  • Balachandra P. Shetty
Technical Article---Peer-Reviewed
  • 105 Downloads

Abstract

Repair schemes for rectification of deviation and or defects in a turbo-shaft engine have been undertaken for sustaining reliability and availability of airborne equipments. A number of reclamation schemes have been developed and implemented successfully. This paper describes the common defects encountered in the aeroengine under study. The methodology for developing the reclamation scheme has been presented along with few case studies. These schemes have helped in maintaining the fleet effectively and avoiding costly rejections and turnaround time of the aeroengine.

Keywords

Defect analysis Repair scheme Turbo-shaft engine Vaporizer tube 

References

  1. 1.
    S.A. Suhr, Preliminary turboshaft engine design methodology for rotorcraft applications, School of Aerospace Engineering Theses and Dissertations, Georgia Tech Theses and Dissertations (2006)Google Scholar
  2. 2.
    H. Cohen, G.F.C. Rogers, H.I.H. Saravanamuttoo, Gas Turbine Theory (Longman Group Limited, Essex, 1996)Google Scholar
  3. 3.
    T. Giampaolo, The Gas Turbine Hand Book: Principles and Practices, 2nd edn. (Fairmont Press, Inc, Lilburn, 2003)Google Scholar
  4. 4.
    A. Hamed, W.C. Tabakoff, R.V. Wenglarz, Erosion and deposition in turbomachinery. J. Propuls. Power 22(2), 350–360 (2006)CrossRefGoogle Scholar
  5. 5.
    SAE Aerospace Information Report: Environmental Control System Contamination, SAE International, New York (2007)Google Scholar
  6. 6.
    J.A. Bannantine, J.J. Comer, J.L. Handrock, Fundamental of Metal Fatigue Analysis (Prentice Hall Inc, Englewood Cliffs, 1990), pp. 40–87Google Scholar
  7. 7.
    B.A. Cowles, High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Dileep, S.E. Muthu, P. Udayanan, R.K. Mishra, Effect of fatigue damage parameter on the cumulative life of a turbine rotor under multiaxial loading. J. Fail. Anal. Prev. 16(4), 612–621 (2016). doi: 10.1007/s11668-016-0127-9 CrossRefGoogle Scholar
  9. 9.
    C.B. Meher-Homji, G. Gabriles, Gas turbine blade failures-causes, avoidance and trouble shooting. In: Proceedings of 27th Turbomachinery Symposium (1995)Google Scholar
  10. 10.
    R. Kurz, K. Brun, Degradation of gas turbine performance in natural gas service. J. Nat. Gas Sci. Eng. 1, 95–102 (2009)CrossRefGoogle Scholar
  11. 11.
    R.K. Mishra, K. Srinivasan, Failure of low-pressure turbine blades in military turbofan engines: causes and remedies. J. Fail. Anal. Prev. (2016). doi: 10.1007/s11668-016-0131-0 Google Scholar
  12. 12.
    P.C. Patnaik, R. Thamburaj, Development of a qualification methodology for advanced gas turbine engine repairs/reworks, RTO AVT, Workshop on “Qualification of Life Extension Schemes for Engine Components”, Corfu, Greece, 5–6 October (1998)Google Scholar
  13. 13.
    R.R. Hastings, Aero-engine component repair/replacement decision factors, RTO AVT, Workshop on “Qualification of Life Extension Schemes for Engine Components”, Corfu, Greece, 5–6 October (1998)Google Scholar
  14. 14.
    M.P. Boyce, Gas Turbine Engineering Handbook (Elsevier, Amsterdam, 2011)Google Scholar
  15. 15.
    R. Kurz, K. Brun, Degradation in gas turbine systems. J. Eng. Gas Turbines Power 123(1), 70–77 (2001)CrossRefGoogle Scholar
  16. 16.
    C.B. Meher-Homji, M. Chaker, H. Motiwalla, Gas turbine performance deterioration, in Proceedings of the 30th Turbomachinery Symposium (2001)Google Scholar
  17. 17.
    S.O.T. Ogaji et al., Parameter selection for diagnosing a gas-turbine’s performance-deterioration. Appl. Energy 73, 25–46 (2002)CrossRefGoogle Scholar
  18. 18.
    E. Heron, One Desert Jet Turner (Jets Press, New York, 2011)Google Scholar
  19. 19.
    R.K. Mishra, K. Srinivasan, D.K. Srivastava, V. Nandi, R. Bhat, Impact of foreign object damage on an Aero Gas Turbine Engine. J. Fail. Anal. Prev. 15(1), 25–32 (2015). doi: 10.1007/s11668-014-9914-3 CrossRefGoogle Scholar
  20. 20.
    J.W. Sawyer, Sawyer’s Gas Turbine Engineering Handbook, vol. 1: Theory & Design (Turbo machinery International Publications, 1985)Google Scholar
  21. 21.
    R. Viswanathan, Damage mechanisms and life assessment of high temperature components (ASM international, Ohio, 1989)Google Scholar
  22. 22.
    M. Singh, N.K. Chaturvedi, Failure modes effect and criticality analysis for RML vehicle. J. Aerosp. Qual. Reliab. 1(1), 33–40 (2005)Google Scholar
  23. 23.
    Center, Naval Surface Warfare. Handbook of reliability prediction procedures for mechanical equipment. Carderock Division, Naval Surface Warfare Center (1998)Google Scholar
  24. 24.
    H.C. Low, Recent Research on the Efflux of the Rolls-Royce Vaporizer Fuel Injector, AGARD Conference Proceedings, Vol. 353, Paper 11 (1984)Google Scholar
  25. 25.
    A. Sotheran, The Rolls Royce annular vaporiser combustor. J. Eng. Gas Turbines Power 88, 106–114 (1984)Google Scholar
  26. 26.
    A. K. Jasuja, H.C. Low, Spray performance of a vaporizing fuel injector, in AGARD conference Proceedings, Vol. 422, Paper No. 9 (1987)Google Scholar
  27. 27.
    S.B. Lattime, B.M. Steinetz, Turbine engine clearance control systems: current practices and future direction, NASA/TM–2002-211794, AIAA-2002-3790Google Scholar
  28. 28.
    S. Ogaji, S. Sampath, R. Singh, D. Probert, Novel approach for improving power-plant availability using advanced engine diagnostics. Appl. Energy 72(1), 389–407 (2002)CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Simon K. John
    • 1
  • R. K. Mishra
    • 1
  • Balachandra P. Shetty
    • 2
  1. 1.Regional Center for Military Airworthiness (Engines)BangaloreIndia
  2. 2.Nitte Meenakshi Institute of TechnologyBangaloreIndia

Personalised recommendations