Journal of Failure Analysis and Prevention

, Volume 17, Issue 1, pp 154–158 | Cite as

Study on Microstructure and Properties of 20MnMoNb Steel by Gas Oxynitriding

  • Jin Xu
  • Runjian Jiang
  • Chengsong Zhang
  • Guodong Cui
Technical Article---Peer-Reviewed


The 20MnMoNb steels were gas-oxynitrided for 2 h at 610 °C in a controlled atmosphere by the self-making process control system and gas oxynitriding technology. The microstructure, hardness, wear and corrosion resistance of the 20MnMoNb steels by gas oxynitriding were studied by OM, XRD, hardness test, wear test and neutral salt spray test. The results show that the thickness of diffuse layer is about 0.25 mm and that of the compound layer formed on the surface is about 50 μm. The compound layer is made of bulky columnar crystals, which have different morphology in the different form positions. The compound layer surface of gas-oxynitrided specimens consists of ε-Fe3N, magnetite—Fe3O4 and inner surface consists of ε-Fe3N and Fe4N. The different oxygen and nitrogen concentrations lead to different morphologies in the different positions of bulky column crystals. The compound layer has a good hardness distribution and high wear and corrosion resistance.


Gas oxynitriding Microstructure Hardness Wear resistance Corrosion resistance 



This work was supported by Fundamental Research Funds for the Central Universities of China (A0920502051619-65) and Natural Science Foundation of China (NSFC: 51601156, U1537201).


  1. 1.
    S. Audisio, M. Caillet, A. Galerie, H. Mazille, Traitements de surface et protection contre la corrosion (Ecole d’été CNRS, Aussois, 1987), pp. 361–371. (Les Editions de Physique)Google Scholar
  2. 2.
    A. Constant, G. Henry, J.C. Charbonnier, Principes de base des traitements thermiques, thermomécaniques et thermochimiques des aciers (PYC, Baldwinsville, 1992), pp. 328–334Google Scholar
  3. 3.
    D. Ghiglione, C. Leroux, C. Tournier, Pratique des traitements thermochimiques: nitruration, nitrocarburation et dérivés. Tech. Ing. M 1227, 1–43 (1988)Google Scholar
  4. 4.
    A. Çelik, S. Karadeniz, Surf. Coat. Technol. 80, 283–286 (1996)CrossRefGoogle Scholar
  5. 5.
    M. Tacikowski, I. Ulbin-Pokorska, T. Wierzchon, Microstructure of the composite oxynitrided chromium layers produced on steel by a duplex method. Surf. Coat. Technol. 201(6), 2776–2781 (2006)CrossRefGoogle Scholar
  6. 6.
    J.R. Sobiecki, T. Wierzchoń, Glow discharge assisted oxynitriding of the binary Ti6Al2Cr2Mo titanium alloy. Vacuum 79(3–4), 203–208 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Kazior, C. Janczur, T. Pieczonka, J. Ploszczak, Thermochemical treatment of Fe–Cr–Mo alloys. Surf. Coat. Technol. 151–152(1), 333–337 (2002)CrossRefGoogle Scholar
  8. 8.
    J.R. Sobiecki, T. Wierzchoń, J. Rudnicki, The influence of glow discharge nitriding, oxynitriding and carbonitriding on surface modification of Ti-1Al-1Mn titanium alloy. Vacuum 64(1), 41–46 (2001)CrossRefGoogle Scholar
  9. 9.
    T. Wierzchoń, I. Ulbin-Pokorska, K. Sikorski, Corrosion resistance of chromium nitride and oxynitride layers produced under glow discharge conditions. Surf. Coat. Technol. 130(2–3), 274–279 (2000)CrossRefGoogle Scholar
  10. 10.
    L. Jian, Study on oxi-nitridizing process. Hot Work. Technol. 37(8), 78–79 (2008)Google Scholar
  11. 11.
    Zhou Pan-bing, Zhou Lang, Chen Zhong-bo, Comparison of microstructures and properties between oxy-nitrided and nitrided with post-oxidized h igh speed steel. Metal Heat Treat. 32(5), 27–30 (2007)Google Scholar
  12. 12.
    Long Fa-jin, Zhou Shang-qi, Liu Lin-fei, Ren Qin, Research progress on nitriding and oxidation combined processes. Hot Work. Technol. 5, 50–52 (2004)Google Scholar
  13. 13.
    Wu Zhang Huai-qing, Sun Jian-jun Xin-tao, Analysis and application of rapid gas nitriding process with preoxidizing method. Metal Heat Treat. 26(11), 31–33 (2001)Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Jin Xu
    • 1
  • Runjian Jiang
    • 2
  • Chengsong Zhang
    • 2
  • Guodong Cui
    • 2
  1. 1.Hubei Province Key Laboratory of Modern Automobile Spare Parts TechnologyWuhan University of TechnologyWuhanChina
  2. 2.School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations