Advertisement

Journal of Failure Analysis and Prevention

, Volume 16, Issue 6, pp 951–962 | Cite as

Flow Motion and Dust Tracking Software for PIV and Dust PTV

  • R. Rossi
  • A. Malizia
  • L. A. Poggi
  • J.-F. Ciparisse
  • E. Peluso
  • P. Gaudio
Tools and Techniques

Abstract

Dust resuspension and mobilization in case of loss of vacuum accidents and loss of coolant accidents is an important safety issue for Tokamaks. The Quantum Electronics and Plasma Physics Research Group of the University of Rome Tor Vergata has produced an experimental facility, STARDUST-Upgrade, able to replicate these accidents and to obtain fluid dynamic characterization and dust mobilization information in order to validate CFD models. The authors decided to implement two non-intrusive optical methods, particle image velocimetry (PIV) and shadowgraph technique. Two software programs have been developed to compute numerical values from PIV and Shadowgraph frames, namely Flow Motion and Dust Tracking Software. Flow Motion Software has the capability to extract flow velocity field analyzing consecutive frames. Dust Tracking Software follows the path of single objects (i.e., dust particles) tracing their velocity, direction, and position over time. Two experiments have been realized for each software program in order to validate them: cigarette smoke and burning paper plume have been used for flow motion software, while tungsten dust and flour mobilization have been used for dust tracking software.

Keywords

Safety Dust mobilization Optical method PTV Shadowgraph Fusion 

References

  1. 1.
    A. Malizia, Radioactive Dust Resuspension/Mobilization Inside Tokamaks (Academic Publishers, New York, 2014)Google Scholar
  2. 2.
    T. Pinna, L.C. Cadwaller, G. Cambi, S. Ciattaglia, S. Knipe, F. Leuterer, A. Malizia, P. Petersen, M.T. Porfiri, F. Sagot, S. Scales, J. Stober, J.C. Vallet, T. Yamanishi, Operating experiences from existing fusion facilities in view of ITER safety and reliability. Fusion Eng. Des. 85, 1410–1415 (2010). (in English) CrossRefGoogle Scholar
  3. 3.
    A. Malizia, I. Lupelli, M. Richetta, M. T. Porfiri, C. Belleci, P. Gaudio, Experimental and numerical study of dust mobilization in high vacuum condition, in Air Pollution and Pollutants (2014), pp. 225–273Google Scholar
  4. 4.
    K. Takase, T. Kunugi, Y. Seki, H. Akimoto, Thermal-hydraulic characteristics during ingress-of-coolant and loss-of-vacuum events in fusion reactors. Nucl. Fusion 40(3Y), 527 (2000)CrossRefGoogle Scholar
  5. 5.
    C. Bellecci, P. Gaudio, I. Lupelli, A. Malizia, M.T. Porfiri, R. Quaranta, M. Richetta, Loss of vacuum accident (LOVA): comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation. Fusion Eng. Des. 86(4–5), 330–340 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Bellecci, P. Gaudio, I. Lupelli, A. Malizia, M. Porfiri, R. Quaranta, M. Richetta, Validation of a loss of vacuum accident (LOVA) computational fluid dynamics (CFD) model. Fusion Eng. Des. 86(9–11), 2774–2778 (2011)CrossRefGoogle Scholar
  7. 7.
    I. Lupelli, P. Gaudio, M. Gelfusa, A. Malizia, I. Belluzzo, M. Richetta, Numerical study of air jet flow during a loss of vacuum. Fusion Eng. Des. 89(9–10), 2048–2052 (2014)CrossRefGoogle Scholar
  8. 8.
    J.-F. Ciparisse, A. Malizia, L. Poggi, O. Cenciarelli, M. Gelfusa, M. Carestia, D. DiGiovanni, S. Mancinelli, L. Palombi, C. Bellecci, P. Gaudio, Numerical simulations as tool to predict chemical and radiological hazardous diffusion in case of nonconventional events. Model. Simul. Eng. 2016, 2 (2016)Google Scholar
  9. 9.
    M. Benedetti, P. Gaudio, I. Lupelli, A. Malizia, M. Porfiri, M. Richetta, Large eddy simulation of loss of vacuum accident in STARDUST facility. Fusion Eng. Des. 88, 2665–2668 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Gaudio, A. Malizia, I. Lupelli, RNG k-modelling and mobilization experiments of loss of vacuum in small tanks for nuclear fusion safety applications. Int. J. Syst. Appl. Eng. Dev. 5(3), 287–305 (2011)Google Scholar
  11. 11.
    P. Gaudio, A. Malizia, I. Lupelli, Experimental and numerical analysis of dust resuspension for supporting chemical and radiological risk assessment in a nuclear fusion device, Paper presented at the 2010 international conference on Mathematical models for engineering science (2010), pp. 134–147Google Scholar
  12. 12.
    A. Malizia, I. Lupelli, M. Richetta, M. Gelfusa, C. Bellecci, P. Gaudio, Safety analysis in large volume vacuum systems like tokamak: experiments and numerical simulation to analyze vacuum ruptures consequences. Adv. Mater. Sci. Eng. 2014, 1–29 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Ciparisse, A. Malizia, L. Poggi, M. Gelfusa, A. Murari, A. Mancini, P. Gaudio, First 3D numerical simulations validated with experimental measurements during a LOVA reproduction inside the new facility STARDUST-upgrade. Fusion Eng. Des. 101, 204–208 (2014)CrossRefGoogle Scholar
  14. 14.
    I. Lupelli, A. Maliza, M. Richetta, L.A. Poggi, J. Ciparisse, M. Gelfusa, P. Gaudio, Simulations and experiments to reach numerical multiphase informations for security analysis on large volume vacuum systems like tokamaks. J. Fusion Energy 34(5), 959–978 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Malizia, M. Gelfusa, G. Francia, M. Boccitto, M.D. Vecchio, D.D. Giovanni, M. Richetta, C. Bellecci, P. Gaudio, Design of a new experimental facility to reproduce LOVA and LOCA consequences on dust resuspension. Fusion Eng. Des. 98–99, 2191–2195 (2014)Google Scholar
  16. 16.
    C. Bellecci, P. Gaudio, I. Lupelli, A. Malizia, M.T. Porfiri, R. Quaranta, M. Richetta, STARDUST experimental campaign and numerical simulations: influence of obstacles and temperature on dust resuspension in a vacuum vessel under LOVA. Nucl. Fusion 51(5), 053017 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Bellecci, P. Gaudio, I. Lupelli, A. Malizia, M. T. Porfiri, R. Quaranta, M. Richetta, Experimental mapping of velocity flow field in case of L.O.V.A. inside STARDUST facility. Paper presented at 37th eps conference on plasma physics (2010)Google Scholar
  18. 18.
    P. Gaudio, A. Malizia, M. Camplani, F. Barbato, L. Antonelli, M. Gelfusa, M.D. Vecchio, L. Salgado, C. Bellecci, M. Richetta, Shadowgraph technique applied to STARDUST facility for dust tracking: first results. Phys. Procedia 62, 97–101 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Benedetti, P. Gaudio, I. Lupelli, A. Malizia, M. T. Porfiri, M. Richetta, Scaled experiment for loss of vacuum accidents in nuclear fusion devices: experimental methodology for fluid-dynamics analysis in STARDUST facility. Paper presented at 2nd international conference on fluid mechanics and heat and mass Transfer (FLUIDSHEAT’11), the 2nd international conference on theoretical and applied mechanics (TAM’11), the 4th WSEAS international conference on (UPT’11),(CUHT’11), at Corfu Island, Greece (2011)Google Scholar
  20. 20.
    L. Poggi, A. Malizia, J. Ciparisse, M. Gelfusa, A. Murari, S. Pierdiluca, E. L. Re, P. Gaudio, Experimental campaign to test the capability of STARDUST-Upgrade diagnostics to investigate LOVA and LOCA conditions, in Proceeding of 42nd EPS Conference on Plasma Physics, 2015Google Scholar
  21. 21.
    L. Poggi, A. Malizia, J. Ciparisse, M. Gelfusa, A. Murari, L.R.E.S. Pierdiluca, P. Gaudio, First experimental campaign to demonstrate STARDUST-upgrade facility diagnostics capability to investigate LOVA conditions. J. Fusion Energy 34(6), 1320–1330 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Bellecci, P. Gaudio, I. Lupelli, A. Malizia, M. T. Porfiri, R. Quaranta, M. Richetta, Characterization of divertor influence in case of LOVA: CFD analysis of STARDUST experimental facility, in Proceedings of 36th EPS Conference on Plasma Phys. Sofia, June 29–July 3, vol. 33E (2009)Google Scholar
  23. 23.
    K. Takase, T. Kunugi, M. Shibata, Y. Seki, Temperature distributions in a Tokamak vacuum vessel of fusion reactor after the loss-of-vacuum events occurred. Fusion Eng. Des. 42, 83–88 (1998)CrossRefGoogle Scholar
  24. 24.
    M. Benedetti, P. Gaudio, A.M.I. Lupelli, M.T. Porfiri, M. Richetta, Influence of temperature fluctuations, measured by numerical simulations, on dust resuspension due to LOVAs. Int. J. Syst. Appl. Eng. Dev. 5(6), 718–727 (2011)Google Scholar
  25. 25.
    A. Malizia, L.A. Poggi, J.-F. Ciparisse, R. Rossi, C. Bellecci, G. Pasquale, A review of dangerous dust in fusion reactors: from its creation to its resuspension in case of LOCA and LOVA. Energies 9(8), 579 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Camplani, A. Malizia, M. Gelfusa, F. Barbato, L. Antonelli, L.A. Poggi, J. Ciparisse, L. Salgado, M. Richetta, P. Gaudio, Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant. Rev. Sci. Instrum. 87, 013504 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Malizia, M. Camplani, M. Gelfusa, I. Lupelli, M. Richetta, L. Antonelli, F. Conetta, D. Scarpellini, M. Carestia, E. Peluso, C. Bellecci, L. Salgado, P. Gaudio, Dust tracking techniques applied to the STARDUST facility: first result. Fusion Eng. Des. 89, 2098–2102 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Malizia, M. Camplani, M. Gelfusa, L. Antonelli, F. Barbato, M. Vecchio, M. Richetta, L. Salgado, C. Bellecci, P. Gaudio, Optical techniques to study the dust resuspension problem in case of LOVA: Comparison of results obtained with PIV and Shadowgraph. Paper presented at 41st EPS conference on plasma physics, berlin, Germany (2014)Google Scholar
  29. 29.
    M.V. Otugen, D. Bivolaru, PIV study of a Mach 1.6 supersonic Jet Paper presented at VSJ-SPIE98, Yokohama, Japan (1998)Google Scholar
  30. 30.
    C. Cierpka, N. A., Buchmann, J. Soria and C. J. Kahler, Ultra-High-Speed 3D Astigmatic PTV in Supersonic Underexpanded Impinging Jets, Paper presented at 17th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2014Google Scholar
  31. 31.
    C.G. Relf, Image acquisition and processing with LABVIEW (2004)Google Scholar
  32. 32.
    B.K.P. Horn, B.G. Schunck, Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1980)CrossRefGoogle Scholar
  33. 33.
    B. D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision. Paper presented at imaging understanding workshop (1981), pp. 121–130Google Scholar
  34. 34.
    J.H. Klote, Method of Predicting Smoke Movement in Atri with Application to Smoke Management (National Institute of Standards and Technology, Gaithersburg, 1994)Google Scholar
  35. 35.
    A. Aksenov, A. Gudzovski, E. Shilkrot, A. Zhivov, Thermal Plume above Heat Sources in Rooms with a Temperature Stratification (AIVC, Ottawa, 1998)Google Scholar
  36. 36.
    S. Vaassen, Development of a natural convection benchmark, experimental and numerical analysis of natural convection heat transfer of a cuboid in an enclosure, Unclassified report (2002)Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • R. Rossi
    • 1
  • A. Malizia
    • 1
  • L. A. Poggi
    • 1
  • J.-F. Ciparisse
    • 1
  • E. Peluso
    • 1
  • P. Gaudio
    • 1
  1. 1.Department of Industrial EngineeringUniversity of Rome Tor VergataRomeItaly

Personalised recommendations