Journal of Failure Analysis and Prevention

, Volume 16, Issue 6, pp 1134–1140 | Cite as

Studying the Effect of Different Environmental Conditions on the Tensile Strength of RGO Reinforced Adhesively Bonded Butt Joints

Technical Article---Peer-Reviewed

Abstract

Nanoscale reinforcements are increasingly being used to improve mechanical, electrical and thermal behavior of polymers. In this study, the effects of reduced graphene oxide (RGO) epoxy filler on the tensile strength of adhesively bonded butt joints were investigated in a variety of environments. Firstly, dry butt joints with different RGO contents were tested using a uni-axial tensile test machine and it was observed that the joints reinforced with 0.5 wt.% RGO showed 22% higher strength than the joints without RGO reinforcements. Secondly, the effects of moisture, salt environment, and dry heat condition were investigated on the strength of the butt joints with different RGO contents. Results show that RGO particles significantly improve the strength values of the joints exposed to moist and dry heat conditions, but have less effect in salt environments.

Keywords

Butt joint Adhesive Reduced graphene oxide Effects of hostile environment 

References

  1. 1.
    D.G. Lee, K.S. Jeong, K.S. Kim, Y.K. Kwak, Development of the anthropomorphic robot with carbon fiber epoxy composite materials. Compos. Struct. 25(1–4), 313–324 (1993)CrossRefGoogle Scholar
  2. 2.
    T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets. Comput. Mater. Sci. 50(4), 1256–1262 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  4. 4.
    E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, A. Rousset, Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater. 48(14), 3803–3812 (2000)CrossRefGoogle Scholar
  5. 5.
    Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 39(12), 1876–1883 (2008)CrossRefGoogle Scholar
  6. 6.
    P.C. Ma, J.-K. Kim, B.Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44(15), 3232–3238 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Zhu, J. Kim, H. Peng, J.L. Margrave, V.N. Khabashesku, E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3(8), 1107–1113 (2003)CrossRefGoogle Scholar
  8. 8.
    P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, A. Palpetis, Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J. Compos. Mater. 43, 977–985 (2009)CrossRefGoogle Scholar
  9. 9.
    K.-D.S. Davey, Electronic Theses, Treatises and Dissertations Paper, 823, 2005Google Scholar
  10. 10.
    F.H. Gojny, M.H. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15), 2300–2313 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Jana, W.-H. Zhong, Y.X. Gan, Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model. Mater. Sci. Eng. A 445, 106–112 (2007)CrossRefGoogle Scholar
  12. 12.
    Y.J. Kim, T.S. Shin, Choi H. Do, J.H. Kwon, Y.-C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1), 23–30 (2005)CrossRefGoogle Scholar
  13. 13.
    N. Yu, Z. Zhang, S. He, Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater. Sci. Eng. A 494(1), 380–384 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Rahman, S. Zainuddin, M. Hosur, J. Malone, M. Salam, A. Kumar et al., Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos. Struct. 94(8), 2397–2406 (2012)CrossRefGoogle Scholar
  15. 15.
    M.-H. Kang, J.-H. Choi, J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Compos. Struct. 108, 417–422 (2014)CrossRefGoogle Scholar
  16. 16.
    G. Gkikas, D. Sioulas, A. Lekatou, N. Barkoula, A. Paipetis, Enhanced bonded aircraft repair using nano-modified adhesives. Mater. Des. 41, 394–402 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Kim, B.-S. Yim, J.-M. Kim, J. Kim, The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron. Reliab. 52(3), 595–602 (2012)CrossRefGoogle Scholar
  18. 18.
    U. Khan, P. May, H. Porwal, K. Nawaz, J.N. Coleman, Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS Appl. Mater. Interfaces 5(4), 1423–1428 (2013)CrossRefGoogle Scholar
  19. 19.
    K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and Fully-Scalable Synthesis of Reduced Graphene Oxide. Scientific Reports, 5, 2015.Google Scholar
  21. 21.
    K. Katnam, J. Stevenson, W. Stanley, M. Buggy, T. Young, Tensile strength of two-part epoxy paste adhesives: influence of mixing technique and micro-void formation. Int. J. Adhes. Adhes. 31(7), 666–673 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Frigione, M. Aiello, C. Naddeo, Water effects on the bond strength of concrete/concrete adhesive joints. Constr. Build. Mater. 20(10), 957–970 (2006)CrossRefGoogle Scholar
  23. 23.
    P. Hu, X. Han, W. Li, L. Li, Q. Shao, Research on the static strength performance of adhesive single lap joints subjected to extreme temperature environment for automotive industry. Int. J. Adhes. Adhes. 41, 119–126 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen et al., Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91(5), 385–389 (2007)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations