Journal of Failure Analysis and Prevention

, Volume 16, Issue 6, pp 999–1005 | Cite as

Neyman–Pearson Test for Fault Detection in the Process Dynamics

  • Lakhdar Aggoune
  • Yahya Chetouani
Technical Article---Peer-Reviewed


Fault detection in industrial plants plays an important role for ensuring the product quality, safety, and reliability of plant equipment. The purpose of this work is to propose a fault detection technique with a black-box modeling and a statistical module based on Neyman–Pearson test (NPT). In fact, Nonlinear Auto-Regressive Moving Average with eXogenous input (NARMAX) model is used to obtain a model for the normal condition operation. To detect a fault, The NPT has been applied to the residual of NARMAX model. The efficiency of the technique is illustrated through its application to monitor product quality in a distillation unit.


Fault detection Black-box modeling Neyman–Pearson test Reliability Chemical processes 


  1. 1.
    R. Isermann, Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5(5), 709–7191 (1997)CrossRefGoogle Scholar
  2. 2.
    S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Springer, Berlin, 2008)Google Scholar
  3. 3.
    M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and Fault-Tolerant Control (Springer, Berlin, 2006)Google Scholar
  4. 4.
    Y. Chetouani, Model selection and fault detection approach based on Bayes decision theory: application to changes detection problem in a distillation column. Process. Saf. Environ. 92(3), 215–223 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Simani, C. Fantuzzi, R. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques (Springer, London, 2002)Google Scholar
  6. 6.
    T. Raïssi, G. Videau, A. Zolghadri, Interval observer design for consistency checks of nonlinear continuous-time systems. Automatica 46(3), 518–527 (2010)CrossRefGoogle Scholar
  7. 7.
    X. Zhang, R. Grube, K.K. Shin, M. Salman, R.S. Conell, Parity-relation-based state-of-health monitoring of lead acid batteries for automotive applications. Control Eng. Pract. 19(6), 555–563 (2011)CrossRefGoogle Scholar
  8. 8.
    I.D. Landau, R. Lozano, M. M’Saad, A. Karimi, Adaptive Control: Algorithms, Analysis and Applications (Springer, London, 2011)CrossRefGoogle Scholar
  9. 9.
    L. Ljung, System Identification, Theory for the User (Prentice Hall Englewood Cliffs, Upper Saddle River, 1999)Google Scholar
  10. 10.
    S.A. Billings, Nonlinear system identification: NARMAX Methods in the time, frequency, and spatio-temporal domains (Wiley, New York, 2013)CrossRefGoogle Scholar
  11. 11.
    A. Akhenak, E. Duviella, B. Bako, S. Lecoeuche, Online fault diagnosis using recursive subspace identification: application to a dam-gallery open channel system. Control Eng. Pract. 21(6), 797–806 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Nugroho, Y.Y. Nazaruddin, H.A. Tjokronegoro, Non-linear identification of aqueous ammonia binary distillation column based on simple hammerstein model. July 20–23 (Melbourne), 5th Asian. Control Conf. Proc. IEEE 1, 118–123 (2004)Google Scholar
  13. 13.
    Y. Zhu, Distillation column identification for control using Wiener model. June 2–4 (San Diego). Am. Control Conf. Proc. IEEE 5, 3462–3466 (1999)Google Scholar
  14. 14.
    Z.K. Peng, Z.Q. Langa, C. Wolters, S.A. Billings, K. Worden, Feasibility study of structural damage detection using NARMAX modelling and Nonlinear Output Frequency Response Function based analysis. Mech. Syst. Signal Process. 25(3), 1045–1061 (2011)CrossRefGoogle Scholar
  15. 15.
    Z. Wei, L.H. Yam, L. Cheng, NARMAX model representation and its application to damage detection for multi-layer composites. Compos. Struct. 68(1), 109–117 (2005)CrossRefGoogle Scholar
  16. 16.
    F. Gustafsson, Adaptive filtering and change detection (Wiley, New York, 2000)Google Scholar
  17. 17.
    M. Basseville, I. Nikiforov, Detection of Abrupt Changes: Theory and Application (Prentice Hall Englewood Cliffs, Upper Saddle River, 1993)Google Scholar
  18. 18.
    M. Barkat, Signal Detection and Estimation (Artech house, Boston, 2005)Google Scholar
  19. 19.
    J. Neyman, E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses. Philos. T. R. Soc. Lond. 231, 289–337 (1933)CrossRefGoogle Scholar
  20. 20.
    N.A.A. Shashoa, G. Kvaščev, A. Marjanović, Ž. Djurović, Sensor fault detection and isolation in a thermal power plant steam separator. Control Eng. Pract. 21(7), 908–916 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Charfi, S. Lesecq, F. Sellami, Fault diagnosis using SWT and Neyman Pearson detection tests. August 31–Sept 3 (Cargese). International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives Conference Proceeding of the IEEE, pp. 16 (2009)Google Scholar
  22. 22.
    A. Zjajo, J.P. De Gyvez, G. Gronthoud, Structural fault modeling and fault detection through Neyman–Pearson decision criteria for analog integrated circuits. J. Electron. Test. 22(4), 399–409 (2006)CrossRefGoogle Scholar
  23. 23.
    F. Harrou, M.N. Nounou, H.N. Nounou, M. Madakyaru, Statistical fault detection using PCA-based GLR hypothesis testing. J. Loss Prevent. Proc. 26(1), 129–139 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Aggoune, Y. Chetouani, H. Radjeai, Change detection in a distillation column using non-linear auto-regressive moving average with exogenous input model and Hellinger. IET Sci. Meas. Technol. 10(1), 10–17 (2016)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.Automatic Laboratory of Setif, Department of Electrical EngineeringSetif 1 UniversitySétifAlgeria
  2. 2.Chemical Engineering DepartmentUniversité de Rouen, IUTMont-Saint-AignanFrance
  3. 3.IRSEEM, ESIGELEC, Technopôle du MadrilletSaint-Étienne-du-RouvrayFrance

Personalised recommendations