Advertisement

Journal of Failure Analysis and Prevention

, Volume 16, Issue 5, pp 828–841 | Cite as

Fatigue in Rotating Equipment: Is it HCF or LCF?

  • Nicholas E. Cherolis
  • Daniel J. Benac
  • Wesley D. Pridemore
Technical Article---Peer-Reviewed

Abstract

This article discusses practical differences between high-cycle fatigue and low-cycle fatigue at relatively lower temperatures in rotating equipment and the equipment attached to it. Methods to identify the failure mode are discussed so proper prevention measures can be put in place to prevent future occurrences. Examples of typical components are provided to show the methods in action.

Keywords

High-cycle fatigue HCF Low-cycle fatigue LCF Fracture Crack initiation Fatigue origin Striations Facets 

References

  1. 1.
    T. Sakai, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structure use. Fourth international conference on very high cycle fatigue, 2007.Google Scholar
  2. 2.
    G. Chai, Subsurface non-defect fatigue crack origin and local plasticity exhaustion. 13th international conference on fracture, June 16–21, Beijing, China.Google Scholar
  3. 3.
    V. Kazymyrpvych, Very high cycle fatigue of engineering materials (literature review), Karlstad University Studies, 2009:22.Google Scholar
  4. 4.
    R. Stone, Fatigue life estimates using goodman diagrams. SMI encyclopedia of spring design.Google Scholar
  5. 5.
    N. Dowling, Mean stress effects in stress-life and strain-life fatigue, SAE Technical Paper 2004-01-2227.Google Scholar
  6. 6.
    P. Lukas, Low cycle fatigue and elasto-plastic behavior of materials, Elsevier, 1998.Google Scholar
  7. 7.
    N. E. Cherolis, Fatigue in the aerospace industry – is it HCF or LCF? MS&T 2012, unpublished presentation.Google Scholar
  8. 8.
    S.D. Antolovich, A. Saxena, “Fatigue Failures,” Metals Handbook, Ninth Edition, Volume 11, p. 111.Google Scholar
  9. 9.
    N.E. Cherolis, Fatigue in the aerospace industry: Striations. J. Fail. Anal. Prev 8(3), 255–258 (2008)CrossRefGoogle Scholar
  10. 10.
    NTSB Materials Laboratory Report No. 90-2, NTSB/AAR-90/06.Google Scholar
  11. 11.
    L. Gonzalez, Flight 232: A Story of Disaster and Survival (W. W. Norton & Company, New York, 2014)Google Scholar
  12. 12.
    Guidelines to Minimize Manufacturing Induced Anomalies in Critical Rotating Parts, DOT/FAA/AR-06/3, 2006.Google Scholar
  13. 13.
    S.S. Manson, A.J. Meyer Jr., H.F. Calvert, M.P. Hanson, Factors affecting vibration of axial-flow compressor blades. Proceedings of the society for experimental stress analysis, vol. 7, No. 2, 1948.Google Scholar
  14. 14.
    Vibration Fatigue Testing of Socket Welds, EPRI Report TR-107455.Google Scholar
  15. 15.
    D.N. Hopkins, D.J. Benac, Investigation of fatigue-induced, socket-welded joint failures for small-bore piping used in power plants. Pract. Fail. Anal. 1(2), 71–82 (2001)CrossRefGoogle Scholar
  16. 16.
    D.J. Benac, Technical brief: avoiding bolt failures. J Fail. Anal. Prev. 7(2), 79–80 (2007)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Nicholas E. Cherolis
    • 1
  • Daniel J. Benac
    • 1
  • Wesley D. Pridemore
    • 2
  1. 1.Baker Engineering and Risk Consultants, Inc.San AntonioUSA
  2. 2.GE-AviationCincinnatiUSA

Personalised recommendations