Advertisement

Journal of Failure Analysis and Prevention

, Volume 16, Issue 5, pp 874–885 | Cite as

Corrosion of Aluminum Alloy Metal Matrix Composites in Neutral Chloride Solutions

  • Roland Tolulope Loto
  • Adeyinka Adeleke
Technical Article---Peer-Reviewed

Abstract

The electrochemical behavior of UNS A0332.00S, UNS A0332.20S, UNS A0359.00S, and UNS A0359.20S aluminum alloys were studied in NaCl media through weight loss, potentiodynamic, and cyclic polarization techniques. UNS A0332.20S and UNS A0359.20S were reinforced with SiC, 20% by volume while the other two samples were not reinforced. Scanning electron microscopy and energy dispersive spectroscopy were used to analyze the role of intermetallic phases in both the corroded and non-corroded aluminum alloy samples. Results showed that unreinforced alloys have lower corrosion rates compared to the reinforced alloys. Pits on the reinforced alloys were significantly more numerous, shallower, and widespread than on the monolithic alloys. Al/SiC interface particles and intermetallic phases were observed to form at the mouth of the pits especially in alloys reinforced with SiC particles which might have contributed significantly to the weakening of regions where localized corrosion occurs. The result shows that intermetallic phases may directly influence the corrosion behavior of the aluminum alloys.

Keywords

Corrosion Aluminum Composite materials Pitting 

Notes

Acknowledgment

The authors express their sincere appreciation to Mechanical Engineering Department, College of Engineering Sciences and Applied Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, KSA for the availability of equipment and services for the research.

References

  1. 1.
    D.M. Aylor, Metals Handbook, 9th edn. (ASM, Metal Park, OH, 1984), pp. 859–863Google Scholar
  2. 2.
    S.V. Nair, J.K. Tien, R.C. Bates, SiC-reinforced aluminum metal matrix composites. Int. Met. Rev. 30(6), 275–290 (1985)Google Scholar
  3. 3.
    D.M. Aylor, R.M. Kain, Assessing the corrosion resistance of metal matrix composite materials in marine environments, in: Recent Advances in Composites in the United States and Japan, ASTM STP 864, ed. by J.R. Vinson, M. Taya (ASTM, Philadelphia, PA, 1983), pp. 632–647.Google Scholar
  4. 4.
    D.M. Aylor, P.J. Moran, Effect of reinforcement on the pitting behaviour of aluminum-based metal matrix composites. J. Electrochem. Soc. 132, 1277–1284 (1985)CrossRefGoogle Scholar
  5. 5.
    M.C. Portal, E.G. Wolff, Advances in structural composites, Paper No. AC14, presented to Society of Aerospace Materials Process Engineering, 12th National Symposium, Exhibit, Western Period, North Hollywood, CA, 1967Google Scholar
  6. 6.
    N. Deo, T.K.G. Namboodhir, Some corrosion characteristics of aluminum-mica particulate composites. Corros. Sci. 29(10), 1215–1229 (1989)CrossRefGoogle Scholar
  7. 7.
    E. McCafferty, G.K. Hubler, P.M. Natishan, Naval research laboratory surface modification program: ion beam and laser processing of metal surfaces for improved corrosion resistance. Mater. Sci. Eng. 86, 1–17 (1987)CrossRefGoogle Scholar
  8. 8.
    P.P.M. Natishan, E. McCafferty, G.K. Hubler, The effect of pH of zero charge on the pitting potential. J. Electrochem. Soc. 133, 1061–1062 (1986)CrossRefGoogle Scholar
  9. 9.
    W.L. Xu, T.M. Yue, H.C. Man, C.P. Chan, Laser surface melting of aluminum alloy 6013 for improving pitting corrosion fatigue resistance. Surf. Coat. Technol. 16–17, 5077–5086 (2000)Google Scholar
  10. 10.
    R.M. Latanision, Corrosion resistance of rapidly quenched alloys, in: Critical Issues in Reducing the Corrosion of Steels, ed. by H. Leidheiser, S. Haruyama (NACE, Houston, TX, 1986), p. 182Google Scholar
  11. 11.
    A.H. Al-saffar, V. Ashworth, A.K.O. Balimov, D.J. Chivers, W.A. Grant, R.P.M. Procter, The effect of molybdenum ion implantation on the general and pitting corrosion behaviour of pure aluminum and high strength aluminum alloy. Corros. Sci. 20(1), 127–144 (1980)CrossRefGoogle Scholar
  12. 12.
    A.J. Sedriks, J.A.S. Green, D.L. Novak, Corrosion behavior of aluminum-boron composites in aqueous chloride solutions. Met. Trans. 2(3), 871–875 (1971)CrossRefGoogle Scholar
  13. 13.
    M.S.H. Bhat, M.K. Surappa, Corrosion behaviour of silicon carbide particle reinforced 6061/Al alloy composites. J. Mater. Sci. 26(18), 4991–4996 (1991)CrossRefGoogle Scholar
  14. 14.
    P.P. Trzaskoma, Pit morphology of aluminum alloy and silicon carbide/aluminum alloymetal matrix composites. Corrosion 46(5), 402–409 (1990)CrossRefGoogle Scholar
  15. 15.
    J. Wu, W. Liu, P. Li, R. Wu, Effect of matrix alloying elements on the corrosion resistance of C/Al composite materials. J. Mater. Sci. Lett. 12(19), 1500–1501 (1993)Google Scholar
  16. 16.
    H. Sun, E.Y. Koo, H.G. Wheat, Corrosion Behavior of SiCp/6061 Al metal matrix composites. Corrosion 47(10), 741–753 (1991)CrossRefGoogle Scholar
  17. 17.
    R.C. Paciej, V.S. Agarwala, Influence of processing variables on the susceptibility of metal-matrix composites. Corrosion 44, 680–684 (1988)CrossRefGoogle Scholar
  18. 18.
    F.U. Yuechun, S.H.I. Nanlin, Z. Dezhi, Y. Rui, Microstructural changes of Ti-6Al-4V Matrix by the incorporation of continuous SIC fibers. J. Mater. Sci. Technol. 22(4), 452–454 (2006)Google Scholar
  19. 19.
    P.P. Trzaskoma, Proceedings on the Effects of Silicon Carbide Whiskers on the Initiation and Propagation of Pits on Silicon Carbide/Aluminum Metal Matrix Composites, in: 10th Congress on Metallic Corrosion, Madras, India, 1987.Google Scholar
  20. 20.
    P.P. Trzaskoma, E. McCafferty, C.R. Crane, Corrosion behaviour of SiC/Al metal matrix composites. J. Electrochem. Soc. 130, 1804–1809 (1983)CrossRefGoogle Scholar
  21. 21.
    P.P. Trzaskoma, Localized corrosion of metal matrix composites, in: Environmental Effects in Advanced Materials, ed. by H.J. Russell, E.R. Richard (The Minerals, Metals & Materials Society, Warrendale, PA, 1981), p. 249.Google Scholar
  22. 22.
    M.A. Streicher, Pitting corrosion of 18Cr-8Ni stainless steel. J. Electrochem. Soc. 103(7), 375–390 (1956)CrossRefGoogle Scholar
  23. 23.
    B.E. Wilde, J.S. Armijo, Influence of sulfur on the corrosion resistance of austenitic stainless steel. Corrosion 23(7), 208–214 (1967)CrossRefGoogle Scholar
  24. 24.
    Z. Szklarska-smialowska, Pitting corrosion of aluminum. Corros. Sci. 41, 1743–1767 (1991)CrossRefGoogle Scholar
  25. 25.
    J.R. Galvele, S.M. Demicheli, Mechanism of intergranular corrosion of Al-Cu alloys. Corros. Sci. 10(11), 795–807 (1970)CrossRefGoogle Scholar
  26. 26.
    I.L. Muller, J.R. Galvele, Pitting potential of high purity binary aluminum alloys—I. Al.Cu alloys. Pitting and intergranular corrosion. Corros. Sci. 17, 179–189 (1977)CrossRefGoogle Scholar
  27. 27.
    B. Mazurkiewicz, A. Piotrowski, The electrochemical behaviour of the Al2Cu intermetallic compound. Corros. Sci. 23, 697–707 (1983)CrossRefGoogle Scholar
  28. 28.
    Corrosion of Aluminum and Aluminum Alloys, http://www.totalmateria.com/Article14.htm. Accessed: 11 Feb 2016
  29. 29.
    H. Ezuber, A. El-houd, F. El-shawesh, A study on the corrosion behavior of aluminum alloys in seawater. Mater. Design 29(4), 801–805 (2008)CrossRefGoogle Scholar
  30. 30.
    E. Deltombe, M. Pourbaix, The electrochemical behavior of aluminum—potential pH diagram of the system AI-H2O at 25°C. Corrosion 14(11), 16–20 (1958)CrossRefGoogle Scholar
  31. 31.
    B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 50, 1841–1847 (2008)CrossRefGoogle Scholar
  32. 32.
    H.M. Zakaria, Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Eng. J. 5(3), 831–838 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Gnecco, A.M. Beccaria, Corrosion behaviour of Al–Si/SiC composite in sea water. Br. Corros. J. 34(1), 57–62 (1999)CrossRefGoogle Scholar
  34. 34.
    A. Pardo, M.C. Merino, S. Merino, M.D. López, F.M. Viejo, Carboneras. Influence of SiCp content and matrix composition on corrosion resistance in cast aluminum matrix composites in salt fog. Corros. Eng. Sci. Technol. 39(1), 82–88 (2004)CrossRefGoogle Scholar
  35. 35.
    B.J. Shamsul, B.Y. Zamri, R.A. Khairel, Comparative study of corrosion behavior of AA2014/15 Vol% Al2O3p and AA2009/20 Vol% SiCw. Portug. Electrochim. Acta. 26(3), 291–301 (2008)Google Scholar
  36. 36.
    P.M. Natishana, W.E. O’Grady, Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review. J. Electrochem. Soc. 161(9), C421–C432 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Schmuki, From Bacon to barriers: a review on the passivity of metals and alloys. J. Solid State Electrochem. 6(3), 145–164 (2002)CrossRefGoogle Scholar
  38. 38.
    G.S. Frankel, N. Sridhar, Review: understanding localized corrosion. Mater. Today 11(10), 38–44 (2008)CrossRefGoogle Scholar
  39. 39.
    I. Bennour, V. Maurice, P. Marcus, X-ray photoelectron spectroscopy study of the interaction of ultra-thin alumina films on NiAl alloys with NaCl solutions. Surf. Interface Anal. 42(6-7), 581–587 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Marcus, V. Maurice, H.H. Strehblow, Localized corrosion (pitting): a model of passivity breakdownincluding the role of the oxide layer nanostructure. Corros. Sci. 50, 2698–2704 (2008)CrossRefGoogle Scholar
  41. 41.
    C.Y. Chao, L.F. Lin, D.D. MacDonald, A point defect model for anodic passive films I. Film growth kinetics. J. Electrochem. Soc. 128, 1187–1194 (1981)CrossRefGoogle Scholar
  42. 42.
    L.F. Lin, C.F. Chao, D.D. MacDonald, A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc. 128, 1194–1198 (1981)CrossRefGoogle Scholar
  43. 43.
    M. Urquidi, D.D. MacDonald, Solute vacancy interaction model and the effect of minor alloying elements on the initiation of pitting corrosion. J. Electrochem. Soc. 132, 555–558 (1985)CrossRefGoogle Scholar
  44. 44.
    N.L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes, J.M.C. Mol, S.J. Garcia, X. Zhou, G.E. Thompson, Durability and corrosion of aluminum and its alloys: overview, property space, techniques and developments, in: Aluminum Alloys—New Trends in Fabrication and Applications ed. by Z. Ahmad (InTech, Rijeka, 2012).Google Scholar
  45. 45.
    S.M. Hirth, G.J. Marshall, S.A. Court, D.J. Lloyd, Effects of Si on the aging behaviour and formability of aluminum alloys based on AA6016. Mater. Sci. Eng. A. 319–321, 452–456 (2001)CrossRefGoogle Scholar
  46. 46.
    M. Usta, M.M.E. Glicksman, R.N. Wright, The effect of heat treatment on Mg2Si coarsening in aluminum 6105 alloy. Met. Mater. Trans. A. 35A(2), 435–438 (2004)CrossRefGoogle Scholar
  47. 47.
    O. Stelling, A. Irretier, O. Kessler, P. Krug, B. Commandeur, New light-weight aluminum alloys with high Mg2Si-content by spray forming. Mater. Sci. Forum. 519–521, 1245–1250 (2006)CrossRefGoogle Scholar
  48. 48.
    F. Eckermann, F.T. Suter, P.J. Uggowitzer, A. Afseth, P. Schmutza, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim. Acta. 54(2), 844–855 (2008)CrossRefGoogle Scholar
  49. 49.
    F.I. Zeng, Z.I. Wei, J.F. Li, C.X. Li, X. Tan, Z. Zhang, Z.Q. Zheng, Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China. 21(12), 2559–2567 (2011)CrossRefGoogle Scholar
  50. 50.
    V. Guillaumin, G. Mankowski, Localized corrosion of 2024 T351 aluminum alloy in chloride media. Corros. Sci. 41(3), 421–438 (1998)CrossRefGoogle Scholar
  51. 51.
    M.H. Larsen, J.C. Walmsley, O. Lunder, R.H. Mathiesen, K. Nisancioglu, Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys. J. Electrochem. Soc. 155(11), C550–C556 (2008)CrossRefGoogle Scholar
  52. 52.
    I.L. Muller, J.R. Galvele, Pitting potential of high purity binary aluminum alloys—II. AlMg and AlZn alloys. Corros. Sci. 17(12), 995–1007 (1977)CrossRefGoogle Scholar
  53. 53.
    B. Mazurkiewicz, A. Piotrowski, The electrochemical behaviour of the Al2Cu intermetallic compound. Corros. Sci. 23(7), 697–707 (1983)CrossRefGoogle Scholar
  54. 54.
    J.R. Scully, T.O. Knight, R.G. Buchheit, D.E. Peebles, Electrochemical characteristics of the Al2Cu, Al3Ta and Al3Zr intermetallic phases and their relevancy to the localized corrosion of Al alloys. Corros. Sci. 35(1–4), 185–195 (1993)CrossRefGoogle Scholar
  55. 55.
    R.G. Buchheit, Electrochemistry of θ(Al2Cu), S(Al2CuMg) and T1(Al2Cu–Li) and localized corrosion and environment assisted cracking in high strength Al alloys. Mater. Sci. Forum. 331(II), (2000).Google Scholar
  56. 56.
    N. Birbilis, M.K. Cavanaugh, R.G. Buchheit, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci. 48(12), 4202–4215 (2006)CrossRefGoogle Scholar
  57. 57.
    E. Andres, O. Juan, R. Edmundo, H. Francisco, A. Daniela, G. Juanluis, Oxygen reduction on Cu1, Mn16O4 spinel particles composite electrodes effect of particles size. J. Chilean Chem. Soc. (2014). doi: 10.4067/S0717-97072014000200023 Google Scholar
  58. 58.
    R. Gundersen, K. Nisancioglu, Cathodic protection of aluminum in seawater. Corrosion 46(4), 279–285 (1990)CrossRefGoogle Scholar
  59. 59.
    S.Y. Luo, Y.C. Zheng, M.C. Li, Effect of Cavitation on corrosion behavior of 20SiMn low-alloy steel in 3% sodium chloride solution. Corrosion. 59(7), 597–605 (2003)CrossRefGoogle Scholar
  60. 60.
    R.T. Loto, Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. J. Mater. Environ. Sci. 4(4), 448–459 (2013)Google Scholar
  61. 61.
    L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterwort, London, 1976), pp. 534–774CrossRefGoogle Scholar
  62. 62.
    P.P. Trzaskoma, Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion 46(5), 402–409 (1990)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCovenant UniversityOtaNigeria
  2. 2.Corrosion & Materials EngineerHoustonUSA
  3. 3.Department of Mechanical EngineeringKing Fahd University of Petroleum & MineralsDhahranKingdom of Saudi Arabia

Personalised recommendations