Journal of Failure Analysis and Prevention

, Volume 16, Issue 4, pp 612–621 | Cite as

Effect of Fatigue Damage Parameter on the Cumulative Life of a Turbine Rotor Under Multiaxial Loading

  • S. Dileep
  • S. Esakki Muthu
  • P. Udayanan
  • R. K. Mishra
Technical Article---Peer-Reviewed

Abstract

The effect of the fatigue damage parameter on the cumulative life of a high-speed turbine rotor has been estimated through finite element approach. Two most commonly used multiaxial fatigue damage models based on critical plane approach-Fatemi Socie (FS) model, and Kandil Brown and Miller model (KBM) have been used to estimate the fatigue life. Structural integrity test was carried out in spin test facility to validate the simulation results. KBM model for fatigue life estimation and LMP model for creep damage predicted a cumulative life within a factor of 1.5 scatter band of the experimental value. The combination of FS model for fatigue life estimation and LMP model could predict cumulative life only within a scatter band of 2. Some of the shortcomings attributed to LDS method can be obviated using a suitable fatigue damage parameter. The study provides invaluable input and confidence for the life prediction of high-speed gas turbine rotors.

Keywords

Mutiaxial fatigue Thermo-mechanical analysis Time-temperature parameter Cyclic spin test Turbine rotor 

Nomenclature

b

Fatigue strength exponent

c

Fatigue ductility exponent

σf

Fatigue strength coefficient

ɛf

Fatigue ductility coefficient

bo

Fatigue strength exponent in torsion

τf

Shear fatigue strength coefficient

γf

Shear fatigue ductility coefficient

co

Fatigue ductility exponent in torsion

E

Young's modulus

G

Shear modulus

ɛeq

Equivalent von Mises strain range

γeq

Equivalent shear strain range

ɛ1

Maximum principal strain range

σn,max

Maximum normal stress

ɛn

Maximum normal strain range

σm

Mean stress

σa

Alternating stress

γmax

Maximum shear strain range

k

Material constant

S

Material constant

References

  1. 1.
    H. Cohen, G.F.C. Rogers, H.I.H. Saravanamuttoo, Gas Turbine Theory, vol. 5 (Wiley, New York, 2001)Google Scholar
  2. 2.
    B.A. Cowles, High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80(2–3), 147–163 (1996)CrossRefGoogle Scholar
  3. 3.
    S.P. Zhu, H.Z. Huang, Y. Liu et al., An efficient life prediction methodology for low cycle fatigue-creep based on ductility exhaustion theory. Int. J. Damage Mech. 22(4), 556–571 (2012)CrossRefGoogle Scholar
  4. 4.
    S.P. Zhu, H.Z. Huang, P.L. He et al., A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys. Eng. Fract. Mech. 90, 89–100 (2012)CrossRefGoogle Scholar
  5. 5.
    S.S. Manson, G. Halford, A method of estimating high temperature low cycle fatigue behaviour of materials, in Proceedings of Int. Conference on Thermal and High Strain Fatigue (Metals and Metallurgy Trust, London, 1967), pp. 154–170.Google Scholar
  6. 6.
    S. Majumdar, P.S. Maiya, A damage equation for creep–fatigue interaction, in Winter annual meeting of ASME, New York, 1976, pp. 323–336.Google Scholar
  7. 7.
    T. Goswami, Low cycle fatigue life prediction—a new model. Int. J. Fatigue 19(2), 109–115 (1997)CrossRefGoogle Scholar
  8. 8.
    S.S. Manson, G.R. Halford, M.H. Hirschberg, Creep–fatigue analysis by strain-range partitioning, in First symposia on design for elevated temperature environment, ASME, 1971, pp. 12–28.Google Scholar
  9. 9.
    W.J. Ostergren, A damage foundation hold time and frequency effects in elevated temperature low cycle fatigue. J. Test Eval. 4, 327–339 (1967)Google Scholar
  10. 10.
    A. Fatemi, N. Shamsaei, Multiaxial fatigue damage modelling and some approximations, in Proceedings of International Conference on Multiaxial Fatigue and Fracture (ICMFF9), Italy, 2010.Google Scholar
  11. 11.
    A. Fatemi, D.E. Socie, A critical plane approach to multiaxial fatigue damage including out of phase loading. Fatigue Fract. Eng. Mater. 11(3), 149–166 (1987)CrossRefGoogle Scholar
  12. 12.
    D.G. Shang, G.Q. Sun, J.H. Chen, N. Cai, Creep-fatigue life prediction under fully reversed multiaxial loading at high temperatures. Int. J. Fatigue 29, 705–712 (2007)CrossRefGoogle Scholar
  13. 13.
    D.G. Shang, D.J. Wang, A new multiaxial fatigue damage model based on the critical plane approach. Int. J. Fatigue 20(3), 241–245 (1998)CrossRefGoogle Scholar
  14. 14.
    U. Kocabicak, M. Firat, A simple approach for multiaxial fatigue damage prediction based on FEM post processing. Mater. Des. 25, 73–82 (2004)CrossRefGoogle Scholar
  15. 15.
    J.F. Besseling, A theory of elastic, initially isotropic material. J. Appl. Mech. 25, 529–536 (1958)Google Scholar
  16. 16.
    L. Gan, H.-Z. Huang, S.-P. Zhu, Y.-F. Li, Y. Yang, Fatigue reliability analysis of turbine disk alloy using saddle point approximation. Int. J. Turbo Jet Engines 30(3), 217–229 (2013). doi: 10.1515/tjj-2013-0020 CrossRefGoogle Scholar
  17. 17.
    J.R. Kattus, Purdue Research Foundation 1999; MARM 247. Aerospace Structural Metal Hand Book, code 4218, 1–8Google Scholar
  18. 18.
    F.R. Larson, J.A. Miller, Time-temperature relationship for rupture and creep stresses. Trans. ASME 74(5), 765–775 (1952)Google Scholar
  19. 19.
    H.-Z. Huang, J. Gong, M.J. Zuo, S.-P. Zhu, Q. Liao, Fatigue life estimation of an aircraft engine under different load spectrums. Int. J. Turbo Jet Engines 29(4), 259–267 (2012). doi: 10.1515/tjj-2012-0017 CrossRefGoogle Scholar
  20. 20.
    R.K. Mishra, T. Johney, K. Srinivasan, N. Vaisakhi, B. Raghavendra, Failure analysis of HP turbine blades in a low bypass turbofan engine. J. Fail. Anal. Prev. 13(3), 274–281 (2013). doi: 10.1007/s11668-013-9674-5 CrossRefGoogle Scholar
  21. 21.
    N.E. Dowling, Mechanical Behaviour of Materials, 2nd edn. (Upper Saddle River, Prentice Hall International, 1999)Google Scholar
  22. 22.
    J.A. Bannantine, J.J. Comer, J.L. Handrock, Fundamental of Metal Fatigue Analysis (Prentice Hall Inc., New Jersey, 1990), pp. 40–87Google Scholar
  23. 23.
    S. Suresh, Fatigue of Materials (Cambridge University Press, UK, 2003)Google Scholar
  24. 24.
    F.A. Kandil, M.W. Brown, K.J. Miller, Biaxial low cycle fatigue failure of 316 stainless steel at elevated temperatures. Metal Struct. 14(22), 203–210 (1982)Google Scholar
  25. 25.
    F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals, McMillan Series in Materials Science (McMillan, New York, 1965)Google Scholar
  26. 26.
    N. Ejaz, I.N. Qureshi, S.A. Rizvi, Creep failure of low pressure turbine blade of an aircraft engine. J. Eng. Failure Anal. 18(6), 1407–1414 (2011)CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • S. Dileep
    • 1
  • S. Esakki Muthu
    • 1
  • P. Udayanan
    • 1
  • R. K. Mishra
    • 2
  1. 1.Aero Engine Research and Design CentreHindustan Aeronautics LimitedBangaloreIndia
  2. 2.Regional Centre for Military AirworthinessBangaloreIndia

Personalised recommendations