Advertisement

Journal of Failure Analysis and Prevention

, Volume 15, Issue 3, pp 445–456 | Cite as

Electron Probe Microanalyzer Evaluation of Fatigue Fracture Surface of Nanoclay–Epoxy Composite Materials

  • M. N. A. Nordin
  • Y. Matsuda
  • K. Tokuno
  • K. Goda
Technical Article---Peer-Reviewed
  • 109 Downloads

Abstract

The use of nano-size fillers for polymer and rubber has become a trend in composite manufacturing industries because the amount of the fillers needed to improve the bulk properties of the material can be reduced to less than the amount necessary for normal size fillers. It has been clarified, however, that the formation of small agglomerates of fillers that occurs during fabrication affects the mechanical properties of the material, such as crack initiation and propagation, and fatigue life. Therefore, fatigue tests of a nanoclay–epoxy composite material were conducted in this study. Results show that the composite fatigue life decreases with increased nanoclay contents. To investigate the effects of nanoclay agglomeration or clustering on the fatigue life, an elemental analysis of the fracture surface was conducted using an electron probe microanalyzer (EPMA). From EPMA images, several factors related with agglomerates causing the premature fatigue cracks were analyzed quantitatively and discussed further.

Keywords

Nanocomposites Nanoclay Fatigue Electron microscopy Agglomeration Clustering 

Notes

Acknowledgments

The authors are grateful to Huntsman Co., Ltd. and Nanocor Inc., which supplied the epoxy resin and nanoclay. The authors are also grateful to Mr. Morifuku from the Centre of Instrumental Analysis, Yamaguchi University for his encouragement and cooperation on guiding and assistance in using the EPMA machine.

References

  1. 1.
    L.S. Schadler, L.C. Brinson, W.G. Sawyer, Polymer nanocomposites: a small part of the story. JOM 59(3), p53–60 (2007)CrossRefGoogle Scholar
  2. 2.
    Y. Xu, S. Van Hoa, Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68(3–4), p854–861 (2008)CrossRefGoogle Scholar
  3. 3.
    N.A. Siddiqui, R.S.C. Woo, J.-K. Kim, C.C.K. Leung, A. Munir, Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites A 38(2), 449–460 (2007)CrossRefGoogle Scholar
  4. 4.
    D.R. Paul, L.M. Robeson, Polymer nanotechnology: nanocomposites. Polymer (Guildf) 49(15), p3187–3204 (2008)CrossRefGoogle Scholar
  5. 5.
    A.A. Azeez, K.Y. Rhee, S.J. Park, D. Hui, Epoxy clay nanocomposites—processing, properties and applications: a review. Composites B 45(1), p308–320 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Chan, K. Lau, T. Wong, M. Ho, D. Hui, Mechanism of reinforcement in a nanoclay/polymer composite. Composites B 42(6), p1708–1712 (2011)CrossRefGoogle Scholar
  7. 7.
    C.-K. Lam, H. Cheung, K. Lau, L. Zhou, M. Ho, D. Hui, Cluster size effect in hardness of nanoclay/epoxy composites. Composites B 36(3), p263–269 (2005)CrossRefGoogle Scholar
  8. 8.
    J.A.M. Ferreira, L.P. Borrego, J.D.M. Costa, C. Capela, Fatigue behaviour of nanoclay reinforced epoxy resin composites. Composites B 52, 286–291 (2013)CrossRefGoogle Scholar
  9. 9.
    B.C. Kim, S.W. Park, D.G. Lee, Fracture toughness of the nano-particle reinforced epoxy composite. Compos. Struct. 86(1–3), p69–77 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Esteves, A. Ramalho, J.A.M. Ferreira, J.P. Nobre, Tribological and mechanical behaviour of epoxy/nanoclay composites. Tribol. Lett. 52(1), 1–10 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Wang, K. Wang, L. Chen, Y. Zhang, C. He, Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites A 37(11), p1890–1896 (2006)CrossRefGoogle Scholar
  12. 12.
    R. Taylor, Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonogr. 6(1), p35–39 (1990)CrossRefGoogle Scholar
  13. 13.
    K. Wang, L. Chen, J. Wu, M.L. Toh, C. He, A.F. Yee, Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38(3), 788–800 (2005)CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • M. N. A. Nordin
    • 1
    • 3
  • Y. Matsuda
    • 1
  • K. Tokuno
    • 1
  • K. Goda
    • 2
  1. 1.Graduate School of Science and EngineeringYamaguchi UniversityUbeJapan
  2. 2.Department of Mechanical EngineeringYamaguchi UniversityUbeJapan
  3. 3.Faculty of Mechanical EngineeringUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia

Personalised recommendations