Journal of Failure Analysis and Prevention

, Volume 15, Issue 6, pp 846–852 | Cite as

Finite Element Analysis of Single-Leg Bending Delamination of Composite Laminates Using a Nonlinear Cohesive Model

  • P. F. Liu
  • Z. P. Gu
Technical Article---Peer-Reviewed


Delamination is a dominating failure mechanism in composites. Deep insight into mixed-mode delamination failure mechanism requires advanced numerical methods. Currently, the cohesive zone model (CZM) by combining with the finite element analysis has become a powerful tool for modeling the delamination initiation and growth of composites. Based on the middle-plane interpolation technique, this paper first develops a 3D finite element technique for implementing exponential CZM using ABAQUS-UEL (User element subroutine). Then, the effects of the cohesive strength, mesh size and initial delamination crack length on the delamination behavior and load response for two single-leg bending composite specimens with mixed-mode I/II delamination modes are studied by comparison with the experimental results. In addition, the viscous effect on the load–displacement curves for two specimens is also studied.


Single-leg bending (SLB) Composite laminates Delamination Cohesive zone model (CZM) Finite element analysis (FEA) 



Dr. Pengfei Liu would sincerely like to thank the support of the National Natural Science Funding of China (No. 51375435), the National Key Fundamental Research and Development Project of China (No. 2015CB057603), the Natural Science Funding of Zhejiang Province of China (No. LY13E050002) and Aerospace Science and Technology Innovation Funding.


  1. 1.
    J.R. Reeder, J.R. Crews, Mixed-mode bending method for delamination testing. AIAA J. 28, 1270–1276 (1990)CrossRefGoogle Scholar
  2. 2.
    S.H. Yoon, C.S. Hong, Modified end notched flexure specimen for mixed mode interlaminar fracture in laminated composites. Int. J. Fract. 43, 3–9 (1990)CrossRefGoogle Scholar
  3. 3.
    B.D. Davidson, V. Sundararaman, A single leg bending test for interfacial fracture toughness determination. Int. J. Fract. 78, 193–210 (1996)CrossRefGoogle Scholar
  4. 4.
    J.J. Polaha, B.D. Davidson, R.C. Hudson, A. Pieracci, Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite. J. Reinf. Plast. Compos. 15, 141–173 (1996)Google Scholar
  5. 5.
    A. Pieracci, B.D. Davidson, V. Sundararaman, Nonlinear analyses of homogeneous, symmetrically delaminated single leg bending specimens. J. Compos. Tech. Res. 20, 170–178 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Szekrényes, U.J. József, Over-leg bending test for mixed-mode I/II interlaminar fracture in composite laminates. Int. J. Damage Mech. 16, 5–33 (2007)CrossRefGoogle Scholar
  7. 7.
    D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
  8. 8.
    G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefGoogle Scholar
  9. 9.
    P.F. Liu, M.M. Islam, A nonlinear cohesive model for mixed-mode delamination of composite laminates. Compos. Struct. 106, 47–56 (2013)CrossRefGoogle Scholar
  10. 10.
    M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)CrossRefGoogle Scholar
  11. 11.
    J. Segurado, J. Llorca, A new three-dimensional interface finite element to simulate fracture in composites. Int. J. Solids Struct. 41, 2977–2993 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Turon, C.G. Dávila, P.P. Camanho, J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRefGoogle Scholar
  13. 13.
    P.W. Harper, S.R. Hallett, Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 75, 4774–4792 (2008)CrossRefGoogle Scholar
  14. 14.
    ASTM D6671/D6671 M-06, Standard test method for mixed mode I-Mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix compositesGoogle Scholar
  15. 15.
    Abaqus Version 6.12 Documentation-Abaqus Analysis Users ManualGoogle Scholar
  16. 16.
    M. Samimi, J.A.W. van Dommelen, M.G.D. Geers, A three-dimensional self-adaptive cohesive zone model for interfacial delamination. Comput. Methods Appl. Mech. Eng. 200, 3540–3553 (2011)CrossRefGoogle Scholar
  17. 17.
    G. Alfano, M.A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50, 1701–1736 (2001)CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  1. 1.Institute of Chemical Machinery and Process EquipmentZhejiang UniversityHangzhouChina

Personalised recommendations