Journal of Failure Analysis and Prevention

, Volume 15, Issue 5, pp 750–757 | Cite as

Failure Analysis of a Low-Pressure Turbine Blade in a Coal-Based Thermal Power Plant

  • M. Ananda Rao
  • M. V. Pavan Kumar
  • T. S. N. Sankara Narayanan
  • S. Subba Rao
  • N. Narasaiah
Technical Article---Peer-Reviewed


The failure of a turbine blade of a 60 MW thermal power plant is addressed in this paper. The findings of this study, based on the operating conditions and the characteristics of failed turbine blade, suggest a corrosion fatigue-related failure. The paper addresses the key elements that could have possibly lead to the failure of the turbine blade and highlights the importance of scrutinizing the operating conditions to eliminate the occurrence of such failures.


Turbine blade failure Thermal power plant Corrosion fatigue Fractography 



The authors express their sincere thanks to Director, CSIR-National Metallurgical Laboratory, Jamshedpur, for his valuable guidance, encouragement, and permission to publish this work.


  1. 1.
    H.G. Naumann, Steam turbine blade design options: how to specify or upgrade, in Proceedings of the Eleventh Turbomachinery Symposium, (A& M University Press, College Station, Texas, TX 1982), pp .29–50Google Scholar
  2. 2.
    R. Viswanathan, Damage mechanisms and life assessment of high temperature components (Metals Park, ASM International, 1989), p. 313Google Scholar
  3. 3.
    A. Atrens, H. Meyer, G. Faber, K. Schneider, M.O. Speidel, A. Atrens, Corrosion in Power Generating Equipment (Plenum Press, Metals Park, 1983), p. 299Google Scholar
  4. 4.
    O. Jonas, L. Machmer, Steam turbine corrosion and deposits problems and solutions, in Proceedings of Thirty Seventh Turbomachinery and Symposium, 2008, pp. 211–227Google Scholar
  5. 5.
    J.S. Sohre, Steam turbine blade failures, causes and correction, in Proceedings of the 4th Symposium Turbomachinery Symposium, (A& M university, Texas, 1975), pp. 9–30Google Scholar
  6. 6.
    N.K. Mukhopadhay, S. Ghosh Chowdhury, G. Das, I. Chottoraj, S.K. Das, D.K. Battacharya, An investigation of the failure of low pressure steam turbine blades. Eng. Fail. Anal. 5, 181–193 (1998)CrossRefGoogle Scholar
  7. 7.
    G. Das, S. Ghosh Chowdhury, A.K. Ray, S.K. Das, D.K. Battacharya, Turbine blade failure in a thermal power plant. Eng. Fail. Anal. 10, 85–91 (2003)CrossRefGoogle Scholar
  8. 8.
    D. Ziegler, M. Puccinelli, B. Bergallo, A. Picasso, Investigation of turbine blade failure in a thermal power plant, Case Studies. Eng. Fail. Anal. 1, 192–199 (2013)Google Scholar
  9. 9.
    B.M. Schonbauer, A. Perlega, and S.E. Stanzl-Tschegg, Pit to crack transition and corrosion fatigue of 12% Cr steam turbine blade steel, in 13th International Conference on Fracture, 2013, pp. 16–21Google Scholar
  10. 10.
    Nurbanasari and Abdurrachim, Crack of a first stage blade in a steam turbine case studies. Eng. Fail. Anal. 2, 54–60 (2014)Google Scholar
  11. 11.
    A. Turnbull, Current understanding of environment-induced cracking of steam turbine steels. Corrosion 64(5), 420–438 (2008)CrossRefGoogle Scholar
  12. 12.
    C.R.F. Azevedo, A. Sinatora, Erosion-fatigue of steam turbine blades. Eng. Fail. Anal. 16(7), 2290–2303 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Kubiak, G. Gongalez, D. Juarez, J. Nebradt, F. Sierra et al., J. Fail. Anal. Prev. 4(3), 47–51 (2004)Google Scholar
  14. 14.
    Chemical compositions of stainless steel BS EN 10269, Featured articles and publications, European EN grade summary, British stainless steel Association, Pegasus House, SheffieldGoogle Scholar
  15. 15.
    Development of protocols for corrosion and deposits evaluation in pipes by radiography, International Atomic Energy Agency-TECDOC-1445, Austria, 2005, pp. 9–10Google Scholar
  16. 16.
    W. Clay, Maranville “Radiographic imaging of microstructural defects in ceramic tapes”, Retrospective Theses and Dissertation, Lowa State University, Ames, 1996Google Scholar
  17. 17.
    “Turbine inspection manual” M/s SKODAPOWER—OEM—Czech Republic, 2005Google Scholar
  18. 18.
    C. Leinenbach, A. Al-Badri, M. Roth, M. Hadad, S. Siegmann, B. Scarlin, M. Staubli, R. Hitzek, P. Bürgler, A. Nicoll, R. Damani, Th. Peters, J. Crummenauer, G. Reisel, Coatings for valves and blades in steam turbines, EPMA publications, 2007, EPMA-20070344Google Scholar
  19. 19.
    Bernd M. Schönbauer, Andrea Perlega, Stefanie E. Stanzl-Tschegg, Pit-to-crack transition and corrosion fatigue of 12% Cr steam turbine blade steel, in 13th International Conference on Fracture, Beijing, China, 2013, pp. 1–10Google Scholar
  20. 20.
    K.M. Perkins, M.R. Bache, Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments. Int. J. Fatigue 27, 1499–1508 (2005)CrossRefGoogle Scholar
  21. 21.
    A.K. Bhaduri, T.P.S. Gill, S.K. Albert, K. Shanmugam, D.R. Iyer, Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables. Nucl. Eng. Des. 206, 249–259 (2001)CrossRefGoogle Scholar
  22. 22.
    G.E. Totten, Fatigue crack propagation. Adv. Mater. Proc. 166(5), 39–41 (2008)Google Scholar
  23. 23.
    Yuichi Yoshino, Akihiko Ikegaya, Pitting and stress cracking of 12Cr–Ni–Mo martensitic stainless steels in chloride and sulfide environments. Corrosion 41(2), 105–113 (1985)CrossRefGoogle Scholar
  24. 24.
    Alireza Bahadori, Hari B. Vuthaluru, Prediction of silica carry-over and solubility in steam of boilers using simple correlation. Appl. Therm. Eng. 30, 250–253 (2010)CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • M. Ananda Rao
    • 1
  • M. V. Pavan Kumar
    • 2
  • T. S. N. Sankara Narayanan
    • 3
  • S. Subba Rao
    • 1
  • N. Narasaiah
    • 4
  1. 1.CSIR-National Metallurgical Laboratory, Madras CentreChennaiIndia
  2. 2.Department of Chemical EngineeringNational Institute of Technology CalicutKozhikodeIndia
  3. 3.Department of Dental Biomaterials and Institute of Biodegradable MaterialsChonbuk National UniversityJeonjuSouth Korea
  4. 4.Department of Metallurgical and Materials EngineeringNational Institute of Technology WarangalWarangalIndia

Personalised recommendations