Advertisement

Journal of Failure Analysis and Prevention

, Volume 15, Issue 5, pp 626–632 | Cite as

Spalling Prevention and Wear Improvement of Rolls in Steel Strip Hot-Rolling Process

  • Qiang Dong
  • Jian-guo Cao
  • Dun Wen
Technical Article---Peer-Reviewed

Abstract

Rolls are key components in hot strip mill. Roll wear and fatigue are inevitable phenomena during hot-rolling process. Finite element (FE) analysis shows that roll profiles, especially work roll wear profile, have significant effects on contact stress distributions. Long-term effect of huge contact stress peaks in roll sides is the main factor for roll spallings. In order to solve serious roll spallings, a design process of backup roll profile is proposed to homogenize contact stress distributions. FE calculation demonstrates the superiority of the new profile in eliminating stress peaks. Industry application also manifests its good performance in preventing roll spalling and improving roll wear.

Keywords

Spalling Wear Contact stress Hot strip mill Roll profile FE analysis 

Notes

Acknowledgment

The authors would like to acknowledge the financial support provided by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120006110015).

References

  1. 1.
    M.S. Prasad, S.K. Dhua, C.D. Singh, A. Ray, Genesis of spalling in tandem mill work-rolls: Some observations in microstructural degeneration. J. Fai. Anal. Prev. 5(6), 30–38 (2005)CrossRefGoogle Scholar
  2. 2.
    R. Colás, J. Ramírez, I. Sandoval, J.C. Morales, L.A. Leduc, Damage in hot rolling work rolls. Wear 230(1), 56–60 (1999)CrossRefGoogle Scholar
  3. 3.
    A. Ray, M.S. Prasad, P.K. Barhai, S.K. Mukherjee, Microstructural characteristics of prematurely failed cold-strip mill work-rolls: Some observations on spalling susceptibility. J. Mater. Eng. Perform. 14(2), 194–202 (2005)CrossRefGoogle Scholar
  4. 4.
    P. Sinha, S.S. Indimath, G. Mukhopadhyay, S. Bhattacharyya, Failure of a work roll of a thin strip rolling mill: a case study. Procedia Eng. 86, 940–948 (2014)CrossRefGoogle Scholar
  5. 5.
    W.S. Dai, M. Ma, J.H. Chen, The thermal fatigue behavior and cracking characteristics of hot-rolling material. Mater. Sci. Eng. A 448(1–2), 25–32 (2007)CrossRefGoogle Scholar
  6. 6.
    R.D. Mercado-Solis, J. Talamantes-Silva, J.H. Beynon, M.A.L. Hernandez-Rodriguez, Modelling surface thermal damage to hot mill rolls. Wear 263(7–12), 1560–1567 (2007)CrossRefGoogle Scholar
  7. 7.
    X. Qin, D. Sun, L. Xie, Q. Wu, Hardening mechanism of Cr5 backup roll material induced by rolling contact fatigue. Mater. Sci. Eng. A 600, 195–199 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Nilsson, M. Olsson, Microstructural, mechanical and tribological characterisation of roll materials for the finishing stands of the hot strip mill for steel rolling. Wear 307(1–2), 209–217 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Wang, S. Qu, F. Lai, X. Li, Z. Fu, W. Yue, Rolling contact fatigue and wear properties of 0.1C–3Cr–2W–V nitrided steel. Int. J. Fatigue 77, 105–114 (2015)CrossRefGoogle Scholar
  10. 10.
    O. Joos, C. Boher, C. Vergne, C. Gaspard, T. Nylen, F. Rezaï-Aria, Assessment of oxide scales influence on wear damage of HSM work rolls. Wear 263(1–6), 198–206 (2007)CrossRefGoogle Scholar
  11. 11.
    G. Yang, J. Cao, J. Zhang, S. Jia, R. Tan, Backup roll contour of a SmartCrown tandem cold rolling mill. J. Univ. Sci. Technol. Beijing 15(3), 357–361 (2008)CrossRefGoogle Scholar
  12. 12.
    W. Li, Z. Guo, J. Yi, X. Liu, Optimization of roll shifting strategy of alternately rolling in hot strip mill. J. Iron Steel Res. Int. 19(5), 37–42 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Brouzoulis, Wear impact on rolling contact fatigue crack growth in rails. Wear 314(1–2), 13–19 (2014)CrossRefGoogle Scholar
  14. 14.
    F.J. Martínez, M. Canales, J.M. Bielsa, M.A. Jiménez, Relationship between wear rate and mechanical fatigue in sliding TPU-metal contacts. Wear 268(3–4), 388–398 (2010)CrossRefGoogle Scholar
  15. 15.
    R.D. Mercado-Solis, J.H. Beynon, Simulation of thermal fatigue in hot strip mill work rolls. Scand. J. Metall. 34(3), 175–191 (2005)CrossRefGoogle Scholar
  16. 16.
    F.J. Belzunce, A. Ziadi, C. Rodriguez, Structural integrity of hot strip mill rolling rolls. Eng. Fail. Anal. 11(5), 789–797 (2004)CrossRefGoogle Scholar
  17. 17.
    Q. Dong, J. Cao, H. Li, Y. Zhou, T. Yan, W. Wang, Analysis of spalling in roughing mill backup rolls of wide and thin strip hot rolling process. Steel Res. Int. 86(2), 129–136 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Choi, D. Lee, J. Lee, Optimization of a railway wheel profile to minimize flange wear and surface fatigue. Wear 300(1–2), 225–233 (2013)CrossRefGoogle Scholar
  19. 19.
    X.L. Chen, J. Zhang, Q.D. Zhang, C.S. Wang, Q. Yang, B.R. Liu, L. Wang, G.C. Wei, S.Q. Huang, J.A. Yang, Development in profile and flatness control system of hot strip mills. Iron Steel 35(7), 28–33 (2000). (in Chinese) Google Scholar
  20. 20.
    J.G. Cao, S.J. Liu, J. Zhang, P. Song, T.L. Yan, Y.Z. Zhou, ASR work roll shifting strategy for schedule-free rolling in hot wide strip mills. J. Mater. Process. Tech. 211(11), 1768–1775 (2011)CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Wuhan Iron & Steel (Group) Corp.WuhanChina

Personalised recommendations