Advertisement

Journal of Failure Analysis and Prevention

, Volume 15, Issue 5, pp 701–710 | Cite as

Fatigue Failure Initiation Modeling in AA7075-T651 Using Microstructure-Sensitive Continuum Damage Mechanics

  • M. Naderi
  • M. Amiri
  • N. Iyyer
  • P. Kang
  • N. Phan
Technical Article---Peer-Reviewed

Abstract

A continuum damage mechanics (CDM) model for high-cycle fatigue (HCF) is presented to study crack initiation in AA7075-T651. This study is based on the experimental observation of dependence of crack initiation life on microstructure of alloys. We investigate the effect of microstructural features such as grain size and grain orientation on crack initiation life. A crystal plasticity finite element model (CPFEM) is implemented in conjunction with CDM model to simulate damage evolution at grain scale. Finite element program ABAQUS has been used and the CPFEM–CDM model is written using a user material subroutine. Simulations are performed for constant amplitude, completely reversed loading. In order to provide a prediction for fatigue scatter, we consider different realizations of the microstructure as well as uncertainty in fatigue parameters. Given probability density function of damage parameters, we can transport it into a lifetime probability density function using simulations results. Good agreement is observed between simulations results and available experimental data. Further investigation is needed to develop the CPFEM–CDM model for HCF under variable loading conditions.

Keywords

Crack initiation Microstructure Continuum damage mechanics Crystal plasticity 

References

  1. 1.
    L.M. Kachanov, Rupture time under creep conditions. Izv. Akad. Nauk. SSSR 8, 26–31. Reprinted from: Int. J. Fract., 97, 11–18 (1958)Google Scholar
  2. 2.
    J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)CrossRefGoogle Scholar
  3. 3.
    J.L. Chaboche, Continuous damage mechanics: a tool to describe phenomena before crack initiation. Nucl. Eng. Des. 64, 233–247 (1981)CrossRefGoogle Scholar
  4. 4.
    J.L. Chaboche, Continuum damage mechanics. I-General concepts. II-Damage growth, crack initiation, and crack growth. ASME, Transactions. J. Appl. Mech. 55, 59–72 (1988)CrossRefGoogle Scholar
  5. 5.
    J. Lemaıtre, A continuum damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)CrossRefGoogle Scholar
  6. 6.
    D. Krajcinovic, Damage Mechanics (North-Holland, Amsterdam, 1996)Google Scholar
  7. 7.
    M. Boudifa, K. Saanouni, J.L. Chaboche, A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming. Int. J. Mech. Sci. 51, 453–464 (2009)CrossRefGoogle Scholar
  8. 8.
    A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part 1—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Sci. Technol. 99, 2–15 (1977)CrossRefGoogle Scholar
  9. 9.
    T.H. Lin, Analysis of elastic and plastic strains of face centered cubic crystal. J. Mech. Phys. Solids 5, 143–149 (1957)CrossRefGoogle Scholar
  10. 10.
    M. Gologanu, J.B. Leblond, G. Perrin, J. Devaux, Recent extensions of Gurson’s model for porous ductile metals, in Continuum Micro-mechanics, CISM Courses and Lectures 377, ed. by P. Suquet (Springer, Berlin, 1997), pp. 61–130Google Scholar
  11. 11.
    M. Amiri, S. Modarres, Short fatigue crack initiation and growth modeling in aluminum 7075-T6. J. Mech. Eng. Sci. (2014). doi: 10.1177/0954406214546880 Google Scholar
  12. 12.
    M. Naderi, S.H. Hosseini, M. Khonsari, Probabilistic simulation of fatigue damage and life scatter of metallic components. Int. J. Plast. 43, 101–115 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Jiang, W. Ott, C. Baum, M. Vormwald, H. Nowack, Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory. Int. J. Plast 25, 780–801 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Kang, Y. Liu, J. Ding, Q. Gao, Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel: damage evolution and damage-coupled visco-plastic constitutive model. Int. J. Plast 25, 838–860 (2009)CrossRefGoogle Scholar
  15. 15.
    C.L. Chow, F. Yang, H.E. Fang, Damage mechanics characterization on the fatigue behavior of a solder joint material. J. Mech. Eng. Sci. 215, 883–892 (2001)CrossRefGoogle Scholar
  16. 16.
    C.L. Chow, And Wang J. crack propagation in mixed-mode ductile fracture with continuum damage mechanics. J. Mech. Eng. Sci. 203, 189–199 (1989)CrossRefGoogle Scholar
  17. 17.
    D.V. Rambabu, V.R. Ranganath, U. Ramamurty, A. Chatterjee, Variable stress ratio in cumulative fatigue damage: experiments and comparison of three models. J. Mech. Eng. Sci. 224, 271–282 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Kyungmok, High-cycle fatigue simulation for aluminum alloy using cohesive zone law. J. Mech. Eng. Sci. 227, 683–692 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Shen, W. Hu, Q. Meng, A damage mechanics approach to fretting fatigue life prediction with consideration of elastic–plastic damage model and wear. Trib. Int. 82, 176–190 (2015)CrossRefGoogle Scholar
  20. 20.
    K.S. Zhang, J.W. Ju, Z. Li, Y.L. Bai, W. Brocks, Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 85, 16–37 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Masih, Mashayekhi1 M., and Torabian N. Identification and validation of a low cycle fatigue damage model for Al 7075-T6 alloy. J. Eng. Mater. Technol. 137, 011004 (2015)CrossRefGoogle Scholar
  22. 22.
    V. Dattoma, S. Giancane, R. Nobile, F.W. Panella, Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model. Int. J. Fatigue 28, 89–95 (2006)CrossRefGoogle Scholar
  23. 23.
    Y.S. Upadhyaya, B.K. Sridhara, Fatigue life prediction: a continuum damage mechanics and fracture mechanics approach. Mater. Des. 35, 220–224 (2012)CrossRefGoogle Scholar
  24. 24.
    B. Bhattacharya, B. Ellingwood, Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20, 631–639 (1998)CrossRefGoogle Scholar
  25. 25.
    B. Bhattacharya, B. Ellingwood, A new CDM-based approach to structural deterioration. Int. J. Solids Struct. 36, 1757–1779 (1999)CrossRefGoogle Scholar
  26. 26.
    A. Rinaldi, P. Peralta, D. Krajcinovic, Y.C. Lai, Prediction of scatter in fatigue properties using discrete damage mechanics. Int. J. Fatigue 28, 1069–1080 (2006)CrossRefGoogle Scholar
  27. 27.
    Y.C. Xiao, S. Li, Z. Gao, A continuum damage mechanic model for high cycle fatigue. Int. J. Fatigue 20, 503–508 (1998)CrossRefGoogle Scholar
  28. 28.
    R. Desmorat, A. Kane, M. Seyedi, J.P. Sermage, Two scale damage model and numerical issues for thermomechanical high cycle fatigue. Eur J Mech 26, 909–935 (2007)CrossRefGoogle Scholar
  29. 29.
    F. Bogard, P. Lestriez, Y.Q. Guo, Damage and rupture simulation of mechanical parts under cyclic loadings. Eng Mater Technol 132, 021003-1–021003-8 (2010)CrossRefGoogle Scholar
  30. 30.
    F. Bogard, P. Lestriez, Y.Q. Guo, Numerical modeling of fatigue damage and fissure propagation under cyclic loading. Int. J. Damage Mech 17, 173–187 (2008)CrossRefGoogle Scholar
  31. 31.
    M.D. Sangid, H.J. Maier, H. Sehitoglu, A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals. Acta Mater. 59, 328–341 (2011)CrossRefGoogle Scholar
  32. 32.
    M.D. Sangid, H.J. Maier, H. Sehitoglu, The role of grain boundaries on fatigue crack initiation—an energy approach. Int. J. Plast 27, 801–821 (2011)CrossRefGoogle Scholar
  33. 33.
    M.D. Sangid, H.J. Maier, H. Sehitoglu, An energy-based microstructure model to account for fatigue scatter in polycrystals. J. Mech. Phys. Solids 59, 595–609 (2011)CrossRefGoogle Scholar
  34. 34.
    D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32, 1521–1542 (2010)CrossRefGoogle Scholar
  35. 35.
    D.L. McDowell, Simulation-based strategies for microstructure-sensitive fatigue modeling. Mater Sci Eng. 468–470, 4–14 (2007)CrossRefGoogle Scholar
  36. 36.
    A. Manonukul, F.P.E. Dunne, High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. Lond. Ser. A 460, 1881–1903 (2004)CrossRefGoogle Scholar
  37. 37.
    C.P. Przybyla, D.L. McDowell, Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti–6Al–4V. Int. J. Plast 27, 1871–1895 (2011)CrossRefGoogle Scholar
  38. 38.
    V.V.C. Wan, D.W. MacLachlan, F.P.E. Dunne, A stored energy criterion for fatigue crack nucleation in polycrystals. Int. J. Fatigue 68, 90–102 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Dingreville, C.C. Battaile, L.N. Brewew, E.A. Holm, B.L. Boyce, The effect of microstructural representation on simulations of microplastic ratcheting. Int. J. Plast 26, 617–633 (2010)CrossRefGoogle Scholar
  40. 40.
    F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading. Int. J. Plast. 25, 1066–1082 (2009)CrossRefGoogle Scholar
  41. 41.
    E. Kroner, Allgemeine Kontinuumstheoreie der Versetzungen und Eigenspannnungen. Arch. Ration. Mech. Anal. 4, 273 (1959)CrossRefGoogle Scholar
  42. 42.
    E.H. Lee, Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1 (1969)CrossRefGoogle Scholar
  43. 43.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRefGoogle Scholar
  44. 44.
    B. Eidel, Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (0 0 1) fcc single crystal. Acta Mater. 59, 1761–1771 (2011)CrossRefGoogle Scholar
  45. 45.
    J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)CrossRefGoogle Scholar
  46. 46.
    D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)CrossRefGoogle Scholar
  47. 47.
    D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31, 1951–1976 (1983)CrossRefGoogle Scholar
  48. 48.
    J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 348, 1001–1127 (1976)CrossRefGoogle Scholar
  49. 49.
    R.J. Asaro, Crystal plasticity. J. Appl. Mech. 50, 921–943 (1983)CrossRefGoogle Scholar
  50. 50.
    J. Lemaitre, A course on damage mechanics (Springer, Berlin, 1992)CrossRefGoogle Scholar
  51. 51.
    G. Sines, Behavior of metals under complex static and alternating stresses, in Metal Fatigue, ed. by G. Sines, J.L. Waisman (McGraw-Hill Book Co., New York, 1959), p. 145Google Scholar
  52. 52.
    R. Stephens, A. Fatemi, R.R. Stephens, H. Fuchs, Metal Fatigue in Engineering, 2nd edn. (Wiley, New York, 2001)Google Scholar
  53. 53.
    Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, in Proceeding of the International Conference on fatigue of metals. Institution of Mechanical Engineers, London, 1956, pp. 138–14Google Scholar
  54. 54.
    K. Van Dang, Sur la résistance à la fatigue des métaux. Sci. Technol. Armement 47, 647 (1973)Google Scholar
  55. 55.
    T.H. Lin, Analysis of elastic and plastic strain of a fcc crystal. J. Mech. Phys. Solids 5, 143 (1957)CrossRefGoogle Scholar
  56. 56.
    G. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307 (1938)Google Scholar
  57. 57.
    Y. Xue, H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy. Acta Mater. 55, 1975–1984 (2007)CrossRefGoogle Scholar
  58. 58.
    DREAM3D (2014) Digital Representation Environment for Analyzing Microstructure in 3D. http://www.dream3d
  59. 59.
    ABAQUS/Standard Version 6.10. User Manual (Hibbit, Karlsson and Sorensen Inc., Rhode Island, 2013)Google Scholar
  60. 60.
    Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, J.B. Jordon, Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651. Eng. Fract. Mech. 74, 2810–2823 (2007)CrossRefGoogle Scholar
  61. 61.
    D. Pyle, J. Lu, D. Littlewood, A. Maniatty, Effect of 3D grain structure representation in polycrystal simulations. Comput. Mech. 52, 135–150 (2013)CrossRefGoogle Scholar
  62. 62.
    J.B. Jordon, M.F. Horstemeyer, K. Solanki, Y. Xue, Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mech. Mater. 39, 920–931 (2007)CrossRefGoogle Scholar
  63. 63.
    T. Zhao, Y. Jiang, Fatigue of 775-T651 aluminum alloy. Int. J. Fatigue 30, 834–849 (2008)CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • M. Naderi
    • 1
  • M. Amiri
    • 1
  • N. Iyyer
    • 1
  • P. Kang
    • 2
  • N. Phan
    • 2
  1. 1.Technical Data Analysis Inc.Falls ChurchUSA
  2. 2.US Naval Air Systems CommandPatuxent RiverUSA

Personalised recommendations