Journal of Failure Analysis and Prevention

, Volume 15, Issue 1, pp 25–32 | Cite as

Impact of Foreign Object Damage on an Aero Gas Turbine Engine

  • R. K. Mishra
  • D. K. Srivastav
  • K. Srinivasan
  • Vaishakhi Nandi
  • Raghavendra R. Bhat
Case History---Peer-Reviewed


An aero gas turbine engine is investigated for foreign object damage. Extensive damage in the low pressure compressor and abnormal noise forced the engine to shut down. Metallic screw type foreign object debris was retrieved from air intake fairing. Chemical analysis of the metallic debris and failed surface of LP compressor blade show the smearing of blade material on the debris and debris material on compressor blade. This confirms that impact of metallic foreign debris has caused extensive damage to LP compressor blades. The paper presents the details of investigation carried out to assess the extent of damage and its root cause. Effective foreign object prevention and elimination program has also been suggested in the paper to address the FOD in aircraft engines.


Materials testing Metallurgical investigation Fractography Defect analysis 


  1. 1.
    H. Ozaltun J. Seidt et al. in Proceedings of ASME Turbo Expo 2009, June 2009, Orlando, FLGoogle Scholar
  2. 2.
    A. Koul et al., in Proceedings of ASME Turbo Expo 2009, June 2009, Orlando, FLGoogle Scholar
  3. 3.
    H. Cohen, G.F.C. Rogers, H.I.H. Saravanamuttoo, Gas turbine Theory, Longman Group Limited, 1996Google Scholar
  4. 4.
    M.P. Boyce, Gas Turbine Engineering Handbook, 2nd edn. (Gulf Professional Publishing, Houston, 2002)Google Scholar
  5. 5.
    G.H. Farrahi et al., Failure analysis of a gas turbine compressor. Eng. Fail. Anal. 18(1), 474–484 (2011)CrossRefGoogle Scholar
  6. 6.
    C.B. Meher-Homji, G.A. Gabriles, in Proceedings of 27th Turbomachinery Symposium, 1995Google Scholar
  7. 7.
    Xi Chen, John W. Hutchinson, Particle impact on metal substrates with application to foreign object damage to aircraft engines. J. Mech. Phys. Solids 50, 2669–2690 (2002)CrossRefGoogle Scholar
  8. 8.
    P.G. Frankel, P.J. Withers, M. Preuss, H.T. Wang, J. Tong, D. Rugg, Residual stress fields after FOD impact on flat and aerofoil-shaped leading edges. Mech. Mater. 55, 130–145 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Suresh, Fatigue of Materials, 2nd edn, Cambridge University Press, 2003, pp. 256–257Google Scholar
  10. 10.
    J.A. Bannantine, J.J. Comer, J.L. Handrock, Fundamental of Metal fatigue Analysis, (Prentice Hall Inc, New Jersey, 1990), pp. 40–87Google Scholar
  11. 11.
    R.H. Johns, FOD Impact Testing of Composites Fan Blades, NASA TM-X 71544, 1974Google Scholar
  12. 12.
    E. Poursaeidi, A. Babaei, F. Behrouzshad, M.R. Mohammadi, Failure analysis of an axial compressor first row rotating blades. J. Eng. Fail. Anal. 28, 25–33 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Kurz, K. Brun, Degradation in gas turbine systems. J. Eng. Gas Turbines Power 123(1), 70–77 (2001)CrossRefGoogle Scholar
  14. 14.
    John J. Ruschau, Theodore Nicholas, Steven R. Thompson, Influence of foreign object damage (FOD) on the fatigue life of simulated Ti-6Al-4V airfoils. Int. J. Impact Eng. 25(3), 233–250 (2001)CrossRefGoogle Scholar
  15. 15.
    J.O. Peters, R.O. Ritchie, Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V. Eng. Fract. Mech. 67, 193–207 (2000)CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • R. K. Mishra
    • 1
  • D. K. Srivastav
    • 2
  • K. Srinivasan
    • 2
  • Vaishakhi Nandi
    • 3
  • Raghavendra R. Bhat
    • 3
  1. 1.Regional Centre for Military Airworthiness – CEMILACBangaloreIndia
  2. 2.Hindustan Aeronautics Limited - Engine DivisionBangaloreIndia
  3. 3.Central Materials & Processes LaboratoryHindustan Aeronautics LimitedBangaloreIndia

Personalised recommendations