Journal of Failure Analysis and Prevention

, Volume 15, Issue 1, pp 101–121 | Cite as

A Study on the Intralaminar Damage and Interlaminar Delamination of Carbon Fiber Composite Laminates Under Three-Point Bending Using Acoustic Emission

  • P. F. Liu
  • J. Yang
  • B. Wang
  • Z. F. Zhou
  • J. Y. Zheng
Technical Article---Peer-Reviewed


The complicated failure mechanisms are always distinct features of composite materials which largely affect the stiffness and strength as well as the structural integrity. Yet, until now there are still no mature methods based on various test approaches for accurately predicting the failure mechanisms and damage evolution behaviors of composite structures by considering the effects of loads, environments, and material defects. This research designs and prepares the [0°16//0°16], [30°16//30°16], and [15°/−15°]3s//[15°/−15°]3s carbon fiber composite specimens with initial interlaminar cracks, and performs the single-leg and over-leg three-point bending mechanical experiments and acoustic emission (AE) tests of composite specimens under 70 °C temperature. The effects of the layup patterns, the loading conditions, and the initial interlaminar crack length on the intralaminar damage and interlaminar delamination behaviors of composite laminates are comparatively studied by analyzing the response process of the AE characteristic parameters including the amplitude, energy, and counting. The AE analysis provides theoretical and technique support for further elucidating the complicated failure mechanisms and their interactions of carbon fiber composite laminates.


Carbon fiber composite laminates Intralaminar damage and interlaminar delamination Acoustic emission (AE) test Single-leg three-point bending (SLB) and over-leg three-point bending (OLB) 



The author Dr. Pengfei Liu would sincerely like to thank the support by the National Natural Science Funding of China (No.51375435), and the National Key Fundamental Research and Development Project (973 Project, No. 2015CB057603), the Natural Science Funding of Zhejiang Province of China (No. LY13E050002) and the Aerospace Support Technique and Innovation Funding.


  1. 1.
    P.W.R. Beaumont, On the problems of cracking and the question of structural integrity of engineering composite materials. Appl. Compos. Mater. 21(1), 5–43 (2014)CrossRefGoogle Scholar
  2. 2.
    P.F. Liu, S.J. Hou, J.K. Chu, X.Y. Hu, C.L. Zhou, Y.L. Liu, J.Y. Zheng, A. Zhao, L. Yan, Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct. 93(6), 1549–1560 (2011)CrossRefGoogle Scholar
  3. 3.
    P.F. Liu, J.Y. Zheng, On the through-the-width multiple delamination, and buckling and postbuckling behaviors of symmetric and unsymmetric composite laminates. Appl. Compos. Mater. 20(6), 1147–1160 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Benmedakhene, M. Kenane, M.L. Benzeggagh, Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring. Compos. Sci. Technol. 59(2), 201–208 (1999)CrossRefGoogle Scholar
  5. 5.
    X.M. Zhuang, X. Yan, Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission. Compos. Sci. Technol. 66(3–4), 444–449 (2006)CrossRefGoogle Scholar
  6. 6.
    R.T. Bocchieri, R.A. Schapery, M.R. Gorman, Time-dependent microcracking detected in a rubber-toughened carbon–epoxy composite by the modal acoustic emission method. J. Compos. Mater. 37(5), 421–451 (2003)CrossRefGoogle Scholar
  7. 7.
    Y.A. Dzenis, J. Qian, Analysis of microdamage evolution histories in composites. Int. J. Solids Struct. 38(10), 1831–1854 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Johnson, G. Peter, Broad-band transient recording and characterization of acoustic emission events in composite laminates. Compos. Sci. Technol. 60(15), 2803–2818 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Huguet, N. Godin, R. Gaertner, L. Salmon, D. Villard, Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos. Sci. Technol. 62(10), 1433–1444 (2002)CrossRefGoogle Scholar
  10. 10.
    C.R. Ramirez-Jimenez, N. Papadakis, N. Reynolds, T.H. Gan, P. Purnell, M. Pharaoh, Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 64(12), 1819–1827 (2004)CrossRefGoogle Scholar
  11. 11.
    T. Lutas, V. Kostopoulos, Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring and damage mechanisms evolution. Compos. Sci. Technol. 69(2), 265–272 (2009)CrossRefGoogle Scholar
  12. 12.
    B.L. Yang, X.M. Zhuang, T.H. Zhang, X. Yan, Damage mode identification for the clustering analysis of AE signals in thermoplastic composites. J. Nondestruct. Eval. 28(3–4), 163–168 (2009)CrossRefGoogle Scholar
  13. 13.
    D.G. Aggelis, N.M. Barkoula, T.E. Matikas, A.S. Paipetis, Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72(10), 1127–1133 (2012)CrossRefGoogle Scholar
  14. 14.
    M.A. Hamstad, A review: acoustic emission, a tool for composite materials studies. Exp. Mech. 26(1), 7–13 (1986)CrossRefGoogle Scholar
  15. 15.
    M. Fotouhi, F. Pashmforoush, M. Ahmadi, R.A. Oskouei, Monitoring the initiation and growth of delamination in composite materials using acoustic emission under quasi-static three-point bending test. J. Reinf. Plast. Compos. 30(17), 1481–1493 (2011)CrossRefGoogle Scholar
  16. 16.
    A.R. Oskouei, M. Ahmadi, Acoustic Emission characteristics of mode Idelamination in glass/polyester composites. J. Compos. Mater. 44(7), 793–807 (2010)CrossRefGoogle Scholar
  17. 17.
    A.B. de Morais, M.F. de Mourab, A.T. Marquesb, P.T. de Castrob, Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Compos. Sci. Technol. 62(5), 679–686 (2002)CrossRefGoogle Scholar
  18. 18.
    I. Silversides, A. Maslouhi, G. LaPlante, Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites. Struct. Health. Monit. 12(2), 126–140 (2013)CrossRefGoogle Scholar
  19. 19.
    J.R. Reeder, J.H. Rews, Mixed-mode bending method for delamination testing. AIAA J. 28(7), 1270–1276 (1990)CrossRefGoogle Scholar
  20. 20.
    A. Szekrenyes, J. Uj, Over-leg bending test for mixed-mode I/II interlaminar fracture in composite laminates. Int. J. Damage Mech. 16(1), 5–33 (2007)CrossRefGoogle Scholar
  21. 21.
    M. Fotouhi, H. Heidary, M. Ahmadi, F. Pashmforoush, Characterization of composite materials damage under quasi-static three-point bending test using wavelet and fuzzy C-means clustering. J. Compos. Mater. 46(15), 1795–1808 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Bohse, Acoustic emission characteristics of micro-failure processes in polymer blends and composites. Compos. Sci. Technol. 60(8), 1213–1226 (2000)CrossRefGoogle Scholar
  23. 23.
    M. Salavatian, L.V. Smith, The effect of transverse damage on the shear response of fiber reinforced laminates. Compos. Sci. Technol. 95, 44–49 (2014)CrossRefGoogle Scholar
  24. 24.
    K.W. Campbell, P.H. Mott, Damage tolerance in glass reinforced polymer laminates. Compos. Sci. Technol. 95, 21–28 (2014)CrossRefGoogle Scholar
  25. 25.
    F. Ciampa, M. Meo, A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures. Composites A 41(12), 1777–1786 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Hill, R. Brooks, D. Kaloedes, Characterization of transverse failure in composites using acoustic emission. Ultrasonics 36(1), 517–523 (1998)CrossRefGoogle Scholar
  27. 27.
    J.J. Scholey, D.W. Paul, R.W. Michael, I.F. Michael, Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Compos. Part A 41(5), 612–623 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Gutkin, C.J. Green, S. Vangrattanachai, S.T. Pinho, P. Robinson, P.T. Curtis, On acoustic emission for failure investigation in CFRP: pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 25(4), 1393–1407 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Czigány, Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos. Sci. Technol. 66(16), 3210–3220 (2006)CrossRefGoogle Scholar
  30. 30.
    N. Ativitavas, T. Pothisiri, T.J. Fowler, Identification of fiber-reinforced plastic failure mechanisms from acoustic emission data using neural networks. J. Compos. Mater. 40(3), 193–226 (2005)CrossRefGoogle Scholar
  31. 31.
    N. Godin, S. Hugueta, R. Gaertnera, L. Salmon, Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers. NDT & E Int. 37(4), 253–264 (2004)CrossRefGoogle Scholar
  32. 32.
    T.P. Philippidis, V.N. Nikolaidis, A.A. Anastassopoulos, Damage characterization of carbon/carbon laminates using neural network techniques on AE signals. NDT & E Int. 31(5), 329–340 (1998)CrossRefGoogle Scholar
  33. 33.
    R. de Oliveira, A.T. Marques, Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct. 86(3–5), 367–373 (2008)CrossRefGoogle Scholar
  34. 34.
    P.F. Liu, J.K. Chu, Y.L. Liu, J.Y. Zheng, A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 37, 228–235 (2012)CrossRefGoogle Scholar
  35. 35.
    Chinese National Standard, Fiber-reinforced Plastic Composites—Determination of Flexural Properties (Chinese National Standardization Management Committee, Beijing, 2005) (In Chinese)Google Scholar
  36. 36.
    Chinese Aerospace Industry Corporation, Chinese Spaceflight Industry Standard Acoustic Emission Inspection Method of Composite Structure (Number QJ2914-97). Beijing: Chinese Aerospace Industry Corporation (1997) (In Chinese)Google Scholar
  37. 37.
    G.M. Liu, Nondestructive Inspection Technology (National Defence Industry Press, Beijing, 2006) (In Chinese)Google Scholar
  38. 38.
    X.J.N. Fang, Z.Q. Zhou, B.N. Cox, Q.D. Yang, High-fidelity simulations of multiple fracture processes in a laminated composite in tension. J. Mech. Phys. Solids 59(7), 1355–1373 (2011)CrossRefGoogle Scholar
  39. 39.
    J.H. Williams, S.S. Lee, Acoustic emission monitoring of fiber composite materials and structures. J. Compos. Mater. 12(4), 348–370 (1978)CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • P. F. Liu
    • 1
  • J. Yang
    • 1
  • B. Wang
    • 2
  • Z. F. Zhou
    • 3
  • J. Y. Zheng
    • 1
  1. 1.Institute of Chemical Machinery and Process EquipmentZhejiang UniversityHangzhouChina
  2. 2.Hangzhou Special Equipment Inspection InstituteHangzhouChina
  3. 3.Engineering DivisionZhejiang University City CollegeHangzhouChina

Personalised recommendations