Journal of Failure Analysis and Prevention

, Volume 14, Issue 6, pp 801–808 | Cite as

Failure Analysis of the Wire Fixation Bolts of an Ilizarov External Fixator

  • P. C. Ortega
  • W. B. MedeirosJr.
  • E. Rosa
  • R. Amorim
  • G. Cardoso
  • L. N. Matos
  • C. R. M. Roesler
Technical Article---Peer-Reviewed


The Ilizarov method is a treatment used to recover the functionality of the upper and lower limbs of patients who have lost bone tissues due to fractures or/and infections caused by accidents or congenital problems. This technique consists of assembling a device on the patient’s limb through which the bone is manipulated gradually. The device consists of external rings connected to each other by threaded rods and fixed to the bone by small diameter steel wires. These wires fasten the bone in an axial cross through a central axis perpendicular to the plane of the bone end and they are tightened to the rings by fixation bolts to provide assembly stability. The proper operation of the device depends mainly on the wire tension, which, in turn, depends on the torque applied to the bolts that hold the wires in place. The failure of these wire fixation bolts may compromise the Ilizarov frame function. In this study, four slotted bolts from a series of slotted bolts fractured during the assembly of Ilizarov fixator in clinical practice were analyzed and the upper limit for tightening these bolts was investigated. The results show that the failures occurred through a combination of mechanical and microstructural factors, including stress concentrators at the upper region of the screw, a high level of microstructural inclusions, and poor surface finish. The mechanical behavior of the bolts under loads was analyzed using the finite element method with the purpose of correlating it with the failure of the bolts.


Ilizarov external fixator Wire fixation bolts Slotted bolt failure 



The authors would like to thank PRONEX-FAPESC, FINEP, and CNPq for financial support.


  1. 1.
    M.M. Mullins, A.W. Davidson, D. Goodier, M. Barry, The biomechanics of wire fixation in the Ilizarov system. Injury 34(2), 155–157 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Aronson, J.H. Harp, Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin. Orthop. Relat. Res. 280, 23–29 (1992)Google Scholar
  3. 3.
    B. Fleming, D. Paley, T. Kristiansen, M. Pope, A biomechanical analysis of the Ilizarov external fixator. Clin. Orthop. Relat. Res. 241, 95–105 (1989)Google Scholar
  4. 4.
    A.E. Goodship, J. Kenwright, The influence of induced micromovement upon the healing of experimental tibial fractures. J. Bone Joint Surg. Br. 67, 650–655 (1985)Google Scholar
  5. 5.
    A.W. Davidson, M. Mullins, D. Goodier, M. Barry, Ilizarov wire tensioning and holding methods: a biomechanical study. Injury 34, 151–154 (2003)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    J. Gessmann, B. Jettkant, M. Königshausen, T.A. Schildhauer, D. Seybold, Improved wire stiffness with modified connection bolts in Ilizarov external frames: a biomechanical study. Acta Bioeng. Biomech. 14(4), 15–21 (2012)Google Scholar
  8. 8.
    D.G. Bronson, M.L. Samchukov, R.B. Ashman, J.G. Birch, R.H. Browne, Stability of external circular fixation: a multi-variable biomechanical analysis. Clin. Biomech. 13, 441–448 (1998)CrossRefGoogle Scholar
  9. 9.
    M.A. Catagni, F. Guerreschi, L. Lovisetti, Distraction osteogenesis for bone repair in the 21st century: lessons learned. Injury 42, 580–586 (2011)CrossRefGoogle Scholar
  10. 10.
    N.A. Osei, B.M. Bradley, P. Culpan, J.B. Mitchell, M. Barry, K.E. Tanner, Relationship between locking-bolt torque and load pre-tension in the Ilizarov frame. Injury 37(10), 941–945 (2006)CrossRefGoogle Scholar
  11. 11.
    J.H. Calhoun, F. Li, B.R. Ledbetter, C.A. Gill, Biomechanics of the Ilizarov fixator for fracture fixation. Clin. Orthop. Relat. Res. 280, 15–22 (1992)Google Scholar
  12. 12.
    P.J. Hillard, A.J. Harrison, R.M. Atkins, The yielding of tensioned fine wires in the Ilizarov frame. Proc. Inst. Mech. Eng. H. 212, 37–47 (1998)CrossRefGoogle Scholar
  13. 13.
    F.E. Donaldson, P. Pankaj, A.H.R.W. Simpson, Investigation of factors affecting loosening of Ilizarov ring–wire external fixator systems at the bone–wire interface. J. Orthop. Res. 30(5), 726–732 (2012)CrossRefGoogle Scholar
  14. 14.
    G.L. Orbay, V.H. Frankel, F.J. Kummer, The effect of wire configuration on the stability of the Ilizarov external fixator. Clin. Orthop. Relat. Res. 279, 299–302 (1992)Google Scholar
  15. 15.
    G.F.V. Voort, E.P. Manilova, Metallography and Microstructures of Stainless Steels and Maraging Steels, Metallography and Microstructures, vol. 9 (ASM Handbook, Metal Park, 2004), pp. 670–700Google Scholar
  16. 16.
    T. Kosa, R.P. Ney, Machining of Stainless Steels, vol. 16, 9th edn. (ASM Handbook, Metal Park, 1989), pp. 681–707Google Scholar
  17. 17.
    E.M. Pohler, Failures of Metallic Orthopedic Implantants, Failure Analysis and Prevention, vol. 11 (ASM Handbook, Metal Park, 1986), pp. 2759–2767Google Scholar
  18. 18.
    ASTM F138-Standard Specification for Wrought 18Chromium–14Nickel–2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants, (2014)Google Scholar
  19. 19.
    J. Brnic, G. Turkalj, M. Canadija, D. Lanc, S. Krsanski, Responses of austenitic stainless steel American, Iron and Steel Institute (AISI) 303 (1.4305) subjected to different environmentalconditions. J. Test. Eval. 40(2), 256–264.
  20. 20.
    A.R. Rosenfield, Fracture Mechanics in Failure Analysis, Fatigue and Fracture, vol. 19 (ASM Handbook, Materials Park, 1996), pp. 1099–1108Google Scholar
  21. 21.
    K.H. Brown,C. Morrow, S. Durbin, A. Bac, Guideline for bolted joint design and analysis: version 1.0,a SAND2008-0371, (2008)Google Scholar
  22. 22.
    J.E. Shigley, Mechanical Engineering Design (Portuguese Translation), 3rd edn. (McGraw-Hill Book, New York, 1984)Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • P. C. Ortega
    • 1
  • W. B. MedeirosJr.
    • 1
  • E. Rosa
    • 2
  • R. Amorim
    • 3
  • G. Cardoso
    • 3
  • L. N. Matos
    • 3
  • C. R. M. Roesler
    • 1
  1. 1.Laboratório de Engenharia Biomecânica (LEBm), Hospital UniversitárioUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.GRANTE, Depto. Engenharia MecânicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Hospital Celso Ramos, Secretaria de Saúde de Santa CatarinaFlorianópolisBrazil

Personalised recommendations