Advertisement

Journal of Failure Analysis and Prevention

, Volume 14, Issue 5, pp 668–674 | Cite as

Fracture Mechanism Analysis of the Heat-Resistant Steel 15Kh2MFA(II) After Laser Shock-Wave Processing

  • I. B. Okipnyi
  • P. O. Maruschak
  • V. I. Zakiev
  • V. S. Mocharskyi
Technical Article---Peer-Reviewed

Abstract

The surface strengthening mechanisms of the 15Kh2MFA(II) heat-resistant steel are analyzed after the laser shock-wave treatment in the air and epoxy resin. The regularities are established in the formation of the ordered surface relief of the steel after treatment. The optical and digital analysis of the surface is performed which allows determining the size of irregularities, taking into account the stochastic and cyclic nature of their formation. The effect of treatment of the 15Kh2MFA(II) heat-resistant steel on the regularities of its static failure is established.

Keywords

Fracture Strain localisation Deformation relief Mesomechanics Laser shock wave Relief 

References

  1. 1.
    Y. Nikiforov, V. Yakovyna, N. Berchenko, Laser shock waves as a tool of changing the strains in materials. Mater. Sci. Eng. A 288, 173–176 (2000)CrossRefGoogle Scholar
  2. 2.
    M. Rozmus-Górnikowska, J. Kusiński, M. Blicharski, Laser shock processing of an austenitic stainless steel. Arch. Metall. Mater. 55, 635–639 (2010)Google Scholar
  3. 3.
    P. Ganesh, R. Sundar, H. Kumar et al., Studies on laser peening of spring steel for automotive applications. Opt. Lasers Eng. 50, 678–686 (2012)CrossRefGoogle Scholar
  4. 4.
    V.A. Yanushkevich, Yu.N. Nikiforov, M.M. Nishchenko, B.P. Kovalyuk, V.B. Glad’o, V.S. Mocharskii, Effect of improvement of corrosion resistance of 15Kh13MF steel irradiated by laser in shock wave generation mode. Inorg. Mater. Appl. Res. 4, 160–164 (2013)CrossRefGoogle Scholar
  5. 5.
    P.O. Maruschak, V.S. Mocharskyi, I.M. Zakiev, Y.M. Nikiforov, Morphology of periodical structures on surface of steel 15Kh13MF after the nanosecond laser irradiation accompanied by generation of shock waves, in Proceedings of the IEEE International Conference on Oxide Materials for Electronic Engineering, September 3–7, Lviv, 2012Google Scholar
  6. 6.
    D. Kharchenko, V. Kharchenko, I. Lysenko, Pattern selection processes and noise induced pattern-forming transitions in periodic systems with transient dynamics. Central Eur. J. Phys. 9, 698–709 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Maruschak, I. Zakiev, V. Mocharsky, Y. Nikiforov, Experimental study of the surface of steel 15Kh13MF after the nanosecond laser shock processing. Solid State Phenom. 200, 60–65 (2013)CrossRefGoogle Scholar
  8. 8.
    P.O. Maruschak, I.B. Okipnyi, Poberezhnyi L. Ya, E.V. Maruschak, Study of heat-resistant steel strain hardening by indentation. Metallurgist 56, 946–951 (2012)CrossRefGoogle Scholar
  9. 9.
    P.V. Yasniy, I.B. Okipnyi, P.O. Maruschak, R.T. Bishchak, A.P. Sorochak, Toughness and failure of heat resistant steel before and after hydrogenation. Theor. Appl. Fract. Mech. 56, 63–67 (2011)CrossRefGoogle Scholar
  10. 10.
    I. Lytvynenko, P. Maruschak, A. Menou, A, Using mathematical model of cyclic random process for diagnostics of nanotitanium surface condition after high-energy treatment, in Proceedings International Symposium on Operational Research and Applications, May 09–10, Marrakech, Morocco, 2013Google Scholar
  11. 11.
    P. Yasnii, P. Marushchak, Yu. Nikiforov, V. Hlado, B. Kovalyuk, Influence of laser shock-wave treatment on the impact toughness of heat-resistant steels. Mater. Sci. 46, 425–429 (2010)CrossRefGoogle Scholar
  12. 12.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRefGoogle Scholar
  13. 13.
    S. Kotrechko, N. Stetsenko, S. Shevchenko, Effect of texture smearing on the anisotropy of cleavage-stress of metals and alloys. Theor. Appl. Fract. Mech. 42, 89–98 (2004)CrossRefGoogle Scholar
  14. 14.
    V.E. Panin, Synergetic principles of physical mesomechanics. Theor. Appl. Fract. Mech. 37, 261–298 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Pineau, Modeling ductile to brittle fracture transition in steels - micromechanical and physical challenges. Int. J. Fract. 150, 129–156 (2008)CrossRefGoogle Scholar
  16. 16.
    J.R. Greer, De J.T.M. Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011)CrossRefGoogle Scholar
  17. 17.
    L.B. Zuev, V.I. Danilov, Plastic deformation modelled as a self-excited wave process at the meso- and macro-level. Theor. Appl. Fract. Mech. 30, 175–184 (1998)CrossRefGoogle Scholar
  18. 18.
    O. Diard, S. Leclerq, G. Rousselier, G. Cailletaud, Evaluation of finite element based analysis of 3D multicrystalline aggregates plasticity: application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries. Int. J. Plast. 17, 537–563 (2005)Google Scholar
  19. 19.
    O.I. Cherepanov, I.Y. Smolin, Y.P. Stefanov, P.V. Makarov, Investigation of influence of internal structure of heterogeneous materials on plastic flow and fracture. Comput. Mater. Sci. 16, 25–31 (1999)CrossRefGoogle Scholar
  20. 20.
    S.S. Wang, J.F. Yau, H.T. Corten, A mixed mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity. Int. J. Fract. 16, 247–259 (1980)CrossRefGoogle Scholar
  21. 21.
    M. Chausov, P. Maruschak, A. Pylypenko, F. Sergejev, O. Student, Effect of high-force impulse loads on the modification of mechanical properties of heat-resistant steel after service. Estonian J. Eng. 18, 251–258 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Maruschak, D. Baran, V. Gliha, A multiscale approach to deformation and fracture of heat-resistant steel under static and cyclic loading. Medžiagotyra 19, 29–33 (2013)Google Scholar
  23. 23.
    A.A. Zisman, V.V. Rybin, Mesoscopic stress field arising from the grain interaction in plastically deformed polycrystals. Acta Mater. 46, 457–464 (1998)CrossRefGoogle Scholar
  24. 24.
    V.E. Panin, Surface layers as synergetic activator of plastic yielding of loaded solid. Met. Sci. and Heat Treat 47, 312–318 (2005)CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • I. B. Okipnyi
    • 1
  • P. O. Maruschak
    • 1
  • V. I. Zakiev
    • 2
  • V. S. Mocharskyi
    • 1
  1. 1.Ternopil National Ivan Pul’uj Technical UniversityTernopilUkraine
  2. 2.National Aviation UniversityKievUkraine

Personalised recommendations