Journal of Failure Analysis and Prevention

, Volume 14, Issue 4, pp 537–548 | Cite as

Erosion–Corrosion of Low Carbon (AISI 1008 Steel) Ring Gasket Under Dynamic High Pressure CO2 Environment

  • Muhammad Imran Khan
  • Tabassum Yasmin
Technical Article---Peer-Reviewed


R39 AISI 1008 steel ring gasket, used as sealing element in choke valve of a gas well, suffered erosion–corrosion after being used for a relatively short time, which resulted in the leakage of gas. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and hardness testing were used to determine the most probable causes of the failure. The results showed that the composition and hardness of ring gasket were in accordance with the required parameters of API 6A Style R39, Class D ring gasket, and AISI 1008 steel. The composition of corrosion products were mainly Fe2O3, Fe3O4 and scaling layer were composed of FeCO3. The investigations indicated that failure of the ring gasket was caused by erosion–corrosion.


Corrosion Erosion CO2 Microstructure Steel 


  1. 1.
    F.M. Song, D.W. Kirk, J.W. Graydon, D.E. Cormack, Predicting carbon dioxide corrosion of bare steel under an aqueous boundary layer. Corrosion 60, 736–743 (2004)CrossRefGoogle Scholar
  2. 2.
    M.B. Kermani, A. Morshed, Carbon dioxide corrosion in oil and gas production—a compendium. Corrosion 59, 659–683 (2003)CrossRefGoogle Scholar
  3. 3.
    L.D. Paolinellia, T. Pérezb, S.N. Simison, The effect of pre-corrosion and steel microstructure on inhibitor performance in CO2 corrosion. Corros. Sci. 50(9), 2456–2464 (2008)CrossRefGoogle Scholar
  4. 4.
    B.R. Linter, G.T. Burstein, Reactions of pipeline steels in carbon dioxide solutions. Corros. Sci. 41(1), 117–139 (1999)CrossRefGoogle Scholar
  5. 5.
    Z. Xia, K.C. Chou, Z.S. Smialowska, Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system. Corrosion 45, 636–642 (1989)CrossRefGoogle Scholar
  6. 6.
    S.L. Wu, Z.D. Cui, F. He, Z.Q. Bai, S.L. Zhu, X.J. Yang, Characterization of the surface film formed from carbon dioxide corrosion on N80 steel. Mater. Lett. 58(6), 1076–1081 (2004)CrossRefGoogle Scholar
  7. 7.
    Z.D. Cui, S.L. Wu, S.L. Zhu, X.J. Yang, Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2. Appl. Surf. Sci. 252(6), 2368–2374 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Pfennig, R. Bäßler, Effect of CO2 on the stability of steels with 1% and 13% Cr in saline water. Corros. Sci. 51(4), 931–940 (2009)CrossRefGoogle Scholar
  9. 9.
    D.A. López, W.H. Schreiner, S.R. de Sánchez, S.N. Simison, The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization. Appl. Surf. Sci. 207(1–4), 69–85 (2003)CrossRefGoogle Scholar
  10. 10.
    H.M. Shalaby, W.T. Riad, A.A. Alhazza, M.H. Behbehani, Failure analysis of fuel supply pipeline. Eng. Fail. Anal. 13(5), 789–796 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Anderko, R.D. Young, Simulation of CO2/H2S corrosion using thermodynamic and electrochemical models, NACE International, San Antonio, TX, Paper No. 99031, 25–30 April 1999Google Scholar
  12. 12.
    J.M. Ueda, H. Takabe, Effect of environmental factors and microstructure on morphology of corrosion products in CO, environments, NACE International, San Antonio, TX, Paper No. 99013, 25–30 April 1999Google Scholar
  13. 13.
    S.M. Hesjevik, S. Olsen , M. Seiersten, Corrosion at High CO2 Pressure, NACE International, San Diego, CA, Paper No. 03345, 16–20 March 1999Google Scholar
  14. 14.
    D.A. López, T. Pérez, S.N. Simison, The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion, a state-of-the-art appraisal. Mater. Des. 24, 561–575 (2003)CrossRefGoogle Scholar
  15. 15.
    H.M. Abd ElLateef, V.M. Abbasov, L.I. Aliyeva, T.A. Ismayilo, Corrosion protection of steel pipelines against CO2 corrosion—a review. Chem. J. 2(2), 52–63 (2012)Google Scholar
  16. 16.
    G.S. Das, A.S. Khanna, Corrosion behaviour of pipeline steel in CO2 environment. Trans. Indian Inst. Met. 57(3), 277–281 (2004)Google Scholar
  17. 17.
    P. Nelson, J.R. Still, Metallurgical failures on offshore oil production installations. Met. Mater. 4, 559–564 (1988)Google Scholar
  18. 18.
    S. Guo, L. Xu, L. Zhang, W. Chang, M. Lu, Corrosion of alloy steels containing 2% chromium in CO2 environments. Corros. Sci. 63, 246–258 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Lunde, A. Dugstad, S. Nešić, in How to control corrosion/erosion problems in multiphase pipeline for oil and gas. Symposium on multiphase transportation III Røros, Norway, 20–22 September 1992Google Scholar
  20. 20.
    F. Farelas, M. Galicia, B. Brown, S. Nešić, H. Castaneda, Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros. Sci. 52, 509–517 (2010)CrossRefGoogle Scholar
  21. 21.
    J.L Crolet, 10th European Corrosion Congress, Barcelona, Paper no. 270, 1993Google Scholar
  22. 22.
    A. Ikeda, M. Ueda, S. Mukai, in CO 2 corrosion behavior and mechanism of carbon steel and alloy steel. Proceedings of Corrosion, NACE International, Paper no. 45, 1983Google Scholar
  23. 23.
    R.O. Rihan, Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution. Mater. Res. 16(1), 227–236 (2013)CrossRefGoogle Scholar
  24. 24.
    S.L. Fu, J.G. Garcia, A.M. Griffin, in Corrosion resistance of some downhole tubing materials and inhibitor effectiveness in sweet environments. Proceedings of Corrosion, NACE International, Denver, CO, Paper No. 96021, 24–29 March 1996Google Scholar
  25. 25.
    Y.N. Mikhailovskii, A.I. Marshakov, N.A. Petrov, Monitoring of underground pipeline corrosion condition with sensory instruments. Prot. Met. 33(3), 293–295 (1997)Google Scholar
  26. 26.
    L.S. Moiseeva, Carbon dioxide corrosion of oil and gas field equipment. Prot. Met. 41(1), 76–83 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Dayalan, F.D. de Moraes, J.R. Shadley, E.F. Rybicki, S.A. Shirazi, CO 2 corrosion prediction in pipe flow under FeCO 3 scale-forming conditions, NACE International Corrosion Conference, San Diego, CA, Paper No. 98051, 22–27 March 1998Google Scholar
  28. 28.
    C. De Waard, U. Lotz, D.E. Milliams, Predictive model for CO2 corrosion engineering in wet natural gas pipelines. Corrosion 47(12), 976–985 (1991)CrossRefGoogle Scholar
  29. 29.
    J.O.M. Bockris, D. Drazic, A.R. Despic, The electrode kinetics of the deposition and dissolution of iron. Electrochim. Acta 4(2–4), 325–361 (1961)CrossRefGoogle Scholar
  30. 30.
    S. Nesvic, L. Lunde, Carbon dioxide corrosion of carbon steel in two-phase flow. Corrosion 50(9), 717–727 (1994)CrossRefGoogle Scholar
  31. 31.
    V. Sridharan, Measurement of carbon dioxide corrosion on carbon steel using electrochemical frequency modulation, M.Sc. thesis, University of Saskatchewan, Canada, 2009Google Scholar
  32. 32.
    S. Nešić, K.L.J. Lee, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: film growth model. Corrosion 59(7), 616–628 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Nešić, M. Nordsveen, R. Nyborg, A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 2: a numerical experiment. Corrosion 59(6), 489–497 (2003)CrossRefGoogle Scholar
  34. 34.
    K. Videm, A. Dugstad, Corrosion of carbon steel in an aqueous carbon dioxide environment—part I: solution effects. Mater. Perform. 28(3), 63–67 (1989)Google Scholar
  35. 35.
    K. Videm, A. Dugstad, Corrosion of carbon steel in an aqueous carbon dioxide environment. Part II: film formation. Mater. Perform. 28(4), 46–50 (1989)Google Scholar
  36. 36.
    J.K. Heuer, J.F. Stubbings, An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 4, 1231–1243 (1999)CrossRefGoogle Scholar
  37. 37.
    J.K. Heuer, J.F. Stubbings, Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow. Corrosion 54(7), 566–575 (1998)CrossRefGoogle Scholar
  38. 38.
    R. Jasinski, Corrosion of N80-type steel by CO2 water mixtures. Corrosion 43(4), 214–218 (1987)CrossRefGoogle Scholar
  39. 39.
    S. Nešić, M. Nordsveen, R. Nyborg, A. Satageland, A mechanistic model for CO 2 corrosion with protective iron carbonate films, NACE International, Houston, TX, Paper No. 0104, 11–16 March 20010Google Scholar
  40. 40.
    C.A. Palacios, J.R. Shadley, Characteristics of corrosion scales on steels in a CO2 saturated NaCl brine. Corrosion 47(2), 122–127 (1991)CrossRefGoogle Scholar
  41. 41.
    S. Al-Hassan, B. Mishra, D.L. Olson, M.M. Salama, Effect of microstructure on corrosion of steels in aqueous solution containing carbon dioxide. Corrosion 54(6), 480–491 (1998)CrossRefGoogle Scholar
  42. 42.
    A. Dugstad, L. Lunde, K. Videm, Parametric study of CO 2 corrosion of carbon steel, NACE International, Houston, TX, 1994, Paper No. 14Google Scholar
  43. 43.
    G.I. Ogundele, W.E. White, Some observations on corrosion of carbon steel in aqueous environments containing carbon dioxide. Corrosion 42(2), 71–78 (1986)CrossRefGoogle Scholar
  44. 44.
    R. Nyborg, Overview of CO 2 corrosion models for wells and pipelines, NACE International, Denver, CO, Paper No. 02233, 7–11 April 2002Google Scholar
  45. 45.
    J. Marsh, T. The, Conflicting views: CO2 corrosion models, corrosion inhibitor availability philosophies, and the effect on subsea systems and pipeline design, Offshore Europe, Aberdeen, UK, SPE Paper No. 109209, 4–7 September 2007Google Scholar
  46. 46.
    C. De Waard, D.E. Williams, Carbonic acid corrosion of steel. Corrosion 31, 177–183 (1975)CrossRefGoogle Scholar
  47. 47.
    K. Videm, in Fundamental studies aimed at improving models for prediction of CO 2 corrosion. Proceedings from 10th European corrosion congress, progress in the understanding and prevention of corrosion, vol. 1, Institute of Metals, London, 1993, pp. 513–519Google Scholar
  48. 48.
    S. Nešić, J. Postlethwaite, S. Olsen, An electrochemical model for prediction of CO2 corrosion, NACE International, 1995, Paper No. 131Google Scholar
  49. 49.
    S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines—a review. Corros. Sci. 49, 4308–4338 (2007)CrossRefGoogle Scholar
  50. 50.
    C. de Waard, U. Lotz, A. Dugstad, Influence of liquid flow velocity on CO 2 corrosion a semi-empirical model, NACE International, Paper No. 128, 1995Google Scholar
  51. 51.
    V.P. Kuznetsov, N.G. Chernaya, Corrosion and protection in oil-and-gas industry, RNTS, VNIIOENG, 10, 1982 (in Russian)Google Scholar
  52. 52.
    C. De Waard, U. Lotz, Prediction of CO2 corrosion of carbon steel, NACE International, Houston, TX, Paper No. 69, 1993Google Scholar
  53. 53.
    A.M.K. Halvorsen, T. Søntvedt, CO2 corrosion model for carbon steel including a wall shear stress model for multiphase flow and limits for production rate to avoid mesa attack, NACE International, San Antonio, TX, Paper No. 99042, 25–30 April 1999Google Scholar
  54. 54.
    CO2 Corrosion Rate Calculation Model, NORSOK standard M-506, (reversion 1, June 1998), Norwegian Technology Standards Institution, Oslo.
  55. 55.
    J.L. Crolet, M.R. Bonis, Prediction of the risks of CO2 corrosion in oil and gas well. SPE Prod. Eng. 6(4), 449–453 (1991)CrossRefGoogle Scholar
  56. 56.
    S. Olsen, CO 2 corrosion prediction by use of the NORSOK M-506 model—guidelines and limitations. NACE International, San Diego, CA, Paper No. 03623, 16–20 March 2003Google Scholar
  57. 57.
    S. Olsen, A.M. Halvorsen, P.G. Lunde, CO 2 corrosion prediction model—basic principles, Houston, TX, Paper No. 05551, 3–7 April 2005Google Scholar
  58. 58.
    F. Reza, S.B. Joramo, H. Sirnes, Corrosion management of a rich gas pipeline, NACE International, Salt Lake City, Utah, Paper No. 2012-1532, 11–15 March 2012Google Scholar
  59. 59.
    S.D. Kapusta, B.F.M. Pots, I.J. Rippon, The application of corrosion prediction models to the design and operation of pipelines, NACE International, New Orleans, LA, Paper No. 04633, 28 March–1 April 2004Google Scholar
  60. 60.
    B.F.M. Pots, E.L.J.A. Hendriksen, CO 2 corrosion under scaling conditions—the special case of top-of-line corrosion in wet gas pipelines, NACE International, Orlando, Florida, Paper No. 00031, 26–31 March 2000Google Scholar
  61. 61.
    B.F.M. Pots, R.C. John, I.J. Rippon, M.J.J. Simon-Thomas, S.D. Kapusta, M. Girgis, T.S. Whitham, Improvements on de Waard-Milliams corrosion prediction and applications to corrosion management, NACE International, Denver, CO, Paper No. 02235, 7–11 April 2002Google Scholar
  62. 62.
    B.F.M. Pots, Mechanistic models for the prediction of CO2 corrosion rates under multiphase flow conditions, NACE International, Houston, TX, Paper No. 137, 1995Google Scholar
  63. 63.
    R. Nyborg, M. Nordsveen, A. Stangeland, Kjeller Sweet Corrosion V, Final Report, Institute for Energy Technology, No. 75, 1998Google Scholar
  64. 64.
    S. Srinivasan, R.D. Kane, Prediction of corrosivity of CO2/H2S production environments, NACE International, Denver, CO, Paper No. 96011, 24–29 March 1996Google Scholar
  65. 65.
    V.R. Jangama, S.A. Srinivasan, Computer model for prediction of corrosion of carbon steels, NACE International, New Orleans, LA, Paper No. 97318, 9–14 March 1997Google Scholar
  66. 66.
    S. Srinivasan, S. Tebbal, Critical factors in predicting CO2/H2S corrosion in multiphase systems, NACE International, San Diego, CA, Paper No. 98038, 22–27 March 1998Google Scholar
  67. 67.
    S. Srinvasan, R.D. Kane, Corrosion prediction models need to include field, lab data—using software system with full range of key parametric effects, a model can accurately predict corrosion rates in carbon steel. Pipeline Gas Ind. 82(6), 39–48 (1999)Google Scholar
  68. 68.
    K.A. Sangita, S. Srinivasan, An analytical model to experimentally emulate flow effects in multiphase CO2/H2S systems, NACE International, Orlando, FL, Paper No. 0058, 26–31 March 2000Google Scholar
  69. 69.
    S. Srinivasan, R.D. Kane, Critical issues in the application and evaluation of a corrosion prediction model for oil and gas systems, NACE International, San Diego, CA, Paper No. 03640, 16–20 March 2003Google Scholar
  70. 70.
    E. Dayalan, G. Vani, J.R. Shadley, S.A. Shirazi, E.F. Rybicki, Modeling CO2 corrosion of carbon steels in pipe flow, NACE International, Houston, TX, Paper No. 118, 1995Google Scholar
  71. 71.
    R. Zhang, M. Gopal, W.P. Jepson, Development of a mechanistic model for predicting corrosion rate in multiphase oil/water/gas flows, NACE International, New Orleans, LA, Paper No. 97601, 9–14 March 1997Google Scholar
  72. 72.
    M. Sundaram, V. Raman, M.S. High, D.A. Tree, J. Wagner, Deterministic modeling of corrosion in downhole environments, NACE International, Denver, CO, Paper No. 96030, 24–29 March 1996Google Scholar
  73. 73.
    M.S. High, J. Wagner, S. Natarajan, Mechanistic modeling of mass transfer in the laminar sublayer in downhole systems, NACE International, Orlando, FL, Paper No. 00062, 26–31 March 2000Google Scholar
  74. 74.
    D. Paisley, N. Barrett, O. Wilson, Pipeline failure: the roles played by corrosion, flow and metallurgy, NACE International, San Antonio, TX, Paper No. 99018, 25–30 April 1999Google Scholar
  75. 75.
    B. Hedges, L. McVeigh, The role of acetate in CO2 corrosion: the double whammy, NACE International, San Antonio, TX, Paper No. 99021, 25–30 April 1999Google Scholar
  76. 76.
    A.J. McMahon, D.M.E. Paisley, Corrosion prediction modelling—a guide to the use of corrosion prediction models for risk assessment in oil and gas production and transportation facilities, Report No. ESR.96.ER.066, BP International, Sunbury, 1997Google Scholar
  77. 77.
    J.L. CanadaMora-Mendoza, S. Turgoose, Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corros. Sci. 44(6), 1223–1246 (2002)CrossRefGoogle Scholar
  78. 78.
    Z.F. Yin, Y.R. Feng, W.Z. Zhao, Z.Q. Baib, G.F. Linb, Effect of temperature on CO2 corrosion of carbon steel. Surf. Interface Anal. 41, 517–523 (2009)CrossRefGoogle Scholar
  79. 79.
    K Videm, The influence of composition of carbon steels on anodic and cathodic reaction rate in CO 2 corrosion, NACE International, San Diego, CA, Paper No. 98030, 22–27 March 1998Google Scholar
  80. 80.
    T. Murata, E. Sato, R. Matsuhashi, Factors controlling corrosion of steel in CO2 saturated environments, advance in CO2 corrosion, NACE International, vol. 1, 1985, pp. 94–71Google Scholar
  81. 81.
    B. Mishra, S. Al-Hassan, D.L. Olson, M.M. Salama, Development of a predictive model for activation-controlled corrosion of steel in solutions containing carbon dioxide. Corrosion 53(11), 852–859 (1997)CrossRefGoogle Scholar
  82. 82.
    S. Nešić, J. Postlethwaite, S. Olsen, An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions. Corrosion 52(4), 280–294 (1996)CrossRefGoogle Scholar
  83. 83.
    S. Nestic, K.J. Lee, V. Ruzic, A mechanistic model of iron carbonate film growth and the effect on CO 2 corrosion of mild steel, NACE International, Denver, CO, Paper No. 02237, 7–11 April 2002Google Scholar
  84. 84.
    H. Malik, Influence of C16 quaternary amine on surface films and polarization resistance of mild steel in carbon dioxide saturated 5% sodium chloride. Corrosion 51, 321–329 (1995)CrossRefGoogle Scholar
  85. 85.
    B.S. McLaury, S. Shirazi, in Predicting erosion in straight pipes. Proceedings of the 1998 ASME Fluids Engineering Division, Washington, DC, FEDSM 98–5226, June 21–25, 1998Google Scholar
  86. 86.
    S.A. Shirazi, J.R. Shadley, B.S. McLaury, E.F. Rybicki, Procedure to predict solid particle erosion in elbows and tees. J. Press. Vessel Technol. 117, 45–52 (1995)CrossRefGoogle Scholar
  87. 87.
    S. Nešić, J. Postlethwaite, Erosion in disturbed liquid/particle pipe flow: effects of flow geometry and particle surface roughness. Corros. Eng. 49(10), 850–859 (1993)Google Scholar
  88. 88.
    C. Li, Effect of corrosion inhibitor on water wetting and carbon dioxide corrosion in oil-water two-phase flow, Ph.D. thesis, Russ College of Engineering and Technology of Ohio University, 2009Google Scholar
  89. 89.
    U. Lotz, T. Sydberger, CO2 corrosion of carbon steel and 13Cr steel in particle-laden fluid. Corrosion 44(11), 800–809 (1998)CrossRefGoogle Scholar
  90. 90.
    J.C. Cardoso Filho, M.E. Orazem, Application of a submerged impinging jet to investigate the influence of temperature, dissolved CO2 and fluid velocity on corrosion of pipeline grade steel in brine, NACE International, Houston, TX, Paper No. 01058, 11–16 March 2001Google Scholar
  91. 91.
    S. Nešić, B.F.M. Pots, J. Postlethwaite, N. Thevenot, Superposition of diffusion and chemical reaction controlled limiting currents—application to CO2 corrosion. J. Corros. Sci. Eng. 1, 1–14 (1995)Google Scholar
  92. 92.
    S. Nešić, G.T. Solvi, J. Enerhaug, Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion. Corrosion 51(10), 773–787 (1995)CrossRefGoogle Scholar
  93. 93.
    S.L. Wu, Z.D. Cui, G.X. Zhao, M.L. Yan, S.L. Zhu, X.J. Yang, EIS study of the surface film on the surface of carbon steel from supercritical carbon dioxide corrosion. Appl. Surf. Sci. 228(1–4), 17–25 (2004)CrossRefGoogle Scholar
  94. 94.
    E. Gulbrandsen, S. Nešić, A. Stangeland, T. Burchart, B. Sundfaer, S.M. Hesjevik, S. Skjerve, Effect of precorrosion on the performance of inhibitors for CO2 corrosion of carbon steel, NACE International, San Diego, CA, Paper No. 98013, 22–27 March 1998Google Scholar
  95. 95.
    L.S. Moiseeva, N.S. Rashevskaya, Effect of pH value on corrosion behavior of steel in CO2-containing aqueous media. Russ. J. Appl. Chem. 75(10), 1625–1633 (2002)CrossRefGoogle Scholar
  96. 96.
    T. Valand, P.A. Sjowall, Properties and composition of surface films formed on steel in CO2—aqueous solutions. Electrochim. Acta 34(2), 273–279 (1989)CrossRefGoogle Scholar
  97. 97.
    A. Munoz, J. Genesca, R. Duran, J. Mendoza, Mechanism of FeCO3 formation on Api X70 pipeline steel in brine solutions containing CO2, NACE International, Houston, TX, Paper No. 05297, 3–7 April 2005Google Scholar
  98. 98.
    A. Neville, T. Hodgkiess, Study of effect of liquid corrosivity in liquid–solid impingement on cast iron and austenitic stainless steel. Br. Corros. J. 32(3), 197–205 (1997)CrossRefGoogle Scholar
  99. 99.
    R. Malka, S. Nešić, D.A. Gulino, Erosion–corrosion and synergistic effects in disturbed liquid–particle flow. Wear 262, 791–799 (2007)CrossRefGoogle Scholar
  100. 100.
    T. Neville, T. Hodgkiess, J.T. Dallas, A study of the erosion–corrosion behavior of engineering steels for marine pumping applications. Wear 186–187, 497–507 (1995)CrossRefGoogle Scholar
  101. 101.
    G.T. Burstein, K. Sasaki, Effect of impact angle on the erosion–corrosion of 304L stainless steel. Wear 186–187, 80–94 (1995)Google Scholar
  102. 102.
    S. Zhou, M.M. Stack, R.C. Newman, Characterization of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques. Corros. Sci. 52(12), 934–942 (1996)Google Scholar
  103. 103.
    J. Postlethwaite, Effect of chromate inhibitor on the mechanical and electrochemical components of erosion–corrosion in aqueous slurries of sand. Corrosion 37(1), 1–5 (1981)CrossRefGoogle Scholar
  104. 104.
    G.T. Burstein, Y. Li, I.M. Hutchings, The influence of corrosion on the erosion of aluminum by aqueous silica slurries. Wear 186–187, 515–522 (1995)Google Scholar
  105. 105.
    A. Neville, M. Reyes, H. Xu, Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries. Tribol. Int. 35, 643–650 (2002)CrossRefGoogle Scholar
  106. 106.
    M. Matsumura, Y. Oka, H. Hiura, M. Yano, The role of passivating film in preventing slurry erosion–corrosion of austenitic stainless steel. ISIJ Int. 31(2), 168–176 (1991)CrossRefGoogle Scholar
  107. 107.
    I. Finnie, in The mechanism of erosion of ductile metals. Proceedings of 3rd US National Congress of applied mechanics, 1958, pp. 527–532Google Scholar
  108. 108.
    J. Postlethwaite, S. Nešić, G. Adamopoulos, D.J. Bergstrom, Predictive models for erosion–corrosion under disturbed flow conditions. Corros. Sci. 35(1–4), 627–633 (1993)CrossRefGoogle Scholar
  109. 109.
    M.M. Salama, E.S. Venkatesh, Evaluation of erosional velocity limitations of offshore gas wells, 15th Annual OTC, Houston, TX, OTC No. 4485, May 2–5 1983Google Scholar
  110. 110.
    K. Jordan, Erosion in multiphase production of oil and gas, NACE International, San Diego, CA, Paper No. 98058, 22–27 March 1998Google Scholar
  111. 111.
    P. Tang, J. Yang, J. Zheng, I. Wong, S. He, J. Ye, Failure analysis and prediction of pipes due to the interaction between multiphase flow and structure. Eng. Fail. Anal. 16(5), 1749–1756 (2009)CrossRefGoogle Scholar
  112. 112.
    D.A. Lopez, S.N. Simison, S.R. De Sanchez, The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 48(7), 845–854 (2003)CrossRefGoogle Scholar
  113. 113.
    D.A. López, W.H. Schreiner, S.R. de Sánchez, S.N. Simison, The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion. An XPS and SEM characterization. Appl. Surf. Sci. 236(1–4), 77–97 (2004)CrossRefGoogle Scholar
  114. 114.
    J.L. Crolet, N. Thevenot, S. Nešić, Role of conductive corrosion products in the protectiveness of corrosion layers. Corrosion 54(3), 194–203 (1998)CrossRefGoogle Scholar
  115. 115.
    S. Nešić, N. Thevenot, J.L. Crolet, D.M. Drazic, Electrochemical properties of iron dissolution in the presence of CO2—basics revisited, NACE International, Denver, CO, Paper No. 96003, 24–29 March 1996Google Scholar
  116. 116.
    D. Clover, B. Kinsella, B. Pejcic, R. De Marco, The influence of microstructure on the corrosion rate of various carbon steels. J. Appl. Electrochem. 35(2), 139–149 (2005)CrossRefGoogle Scholar
  117. 117.
    S.B. Chaouche, A. Lounis, G. Nezzal, Effect of microstructure on corrosion resistance of pipelines steels buried in alkaline soil. Int. J. Microstruct. Mater. Prop. 6(6), 526–542 (2001)Google Scholar
  118. 118.
    F. Niaz, M. Riaz Khan, I.U. Haque, Microstructural characterization of low carbon steel used in aircraft industry, JPMS Conference Issue, Materials, 2010, pp. 19–26Google Scholar
  119. 119.
    C.W. Du, X.G. Li, P. Liang, Z.Y. Liu, G.F. Jia, Y.F. Cheng, Effects of microstructure on corrosion of X70 pipe steel in an alkaline soil. J. Mater. Eng. Perform. 18, 216–220 (2009)CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  1. 1.Mari Petroleum Company Limited3rd Road, G10/4IslamabadPakistan
  2. 2.Department of Mechanical EngineeringUniversity of Engineering and TechnologyPeshawarPakistan

Personalised recommendations