Advertisement

Journal of Failure Analysis and Prevention

, Volume 13, Issue 3, pp 353–358 | Cite as

Failure of a Rear Axle Shaft of an Automobile Due to Improper Heat Treatment

  • H. M. Tawancy
  • Luai M. Al-Hadhrami
Technical Article---Peer-Reviewed

Abstract

A section of fractured rear axle shaft made of induction-hardened steel and removed from the scene of overturned automobile was analyzed to determine the most probable cause of failure. Light optical metallography and scanning electron microscopy combined with energy dispersive spectroscopy were used to characterize the microstructure and the mechanical strength was evaluated by microhardness measurements. Chemical analysis verified that the shaft was made of AISI 4140 steel as per specifications. However, microstructural characterization and microhardness measurements revealed that the shaft was improperly heat treated resulting in a brittle case, where crack propagation was found to occur by an intergranular mode in contrast with cleavage within the core. This behavior was related to differences in microstructure, which was observed to be martensitic-type within the case with microhardness equivalent to R c 58, and a mixture of pearlite and ferrite within the core with R c 25. Although it was not possible to reconstruct the exact sequence of events leading to fracture, it is possible that it was initiated by large overload within the extremely hard brittle case, which could lead to overturning of the vehicle and final fracture could have occurred by the impact of overturning. However, crack initiation due to hydrogen generated by rust and water pickup as well as the possibility that overturning of the vehicle was the cause of the fracture could not be ruled out.

Keywords

Brittle fracture Characterization Cleavage Electron fractography Hardness Steel 

Notes

Acknowledgments

It is a pleasure to acknowledge the continued support of King Fahd University of Petroleum and Minerals.

References

  1. 1.
    Lu, S., Su, J., Liao, S., Wang, B., Yu, L., Jiang, Y., Wen, S.: Finite element analysis on fatigue failure prediction of a rear axle housing of vehicle based on cosmos. Appl. Mech. Mater. 121(126), 843–848 (2012)Google Scholar
  2. 2.
    Qinghua, M., Huifeng, Z., Fengiun, L.: Fatigue failure fault prediction of rear axle housing excited by random road roughness. Int. J. Phys. Sci. 6, 1563–1568 (2011)Google Scholar
  3. 3.
    Topac, M.M., Gunal, H., Kuralay, N.S.: Fatigue failure prediction of a rear axle housing prototype by using finite element analysis. Eng. Fail. Anal. 16, 1474–11482 (2009)CrossRefGoogle Scholar
  4. 4.
    Clarke, C.K., Halimunanda, D.: Failure analysis of induction hardened automotive axles. J. Fail. Anal. Prev. 8, 386–396 (2008)CrossRefGoogle Scholar
  5. 5.
    Asi, O.: Fatigue failure of a rear axle shaft of an automobile. Eng. Fail. Anal. 13, 1293–1302 (2006)CrossRefGoogle Scholar
  6. 6.
    Naumann, F.K.: Failure Analysis and Prevention: Case Histories and Methodology, pp. 9–15. ASM, Materials Park (1983)Google Scholar
  7. 7.
    Kashar, L.: Effect of strain rate on the failure mode of rear axle. In: Esaklul, K.A. (ed.) Handbook of Case Histories in Failure Analysis, vol. 1, pp. 74–78. ASM International, Materials Park (1992)Google Scholar
  8. 8.
    Broek, D.: Fracture mechanics as an important tool in failure analysis. In: Dickson, J.I., Abramovici, E., Marchand, N.S. (eds.) Failure Analysis Techniques and Applications, pp. 33–44. ASM International, Materials Park (1992)Google Scholar
  9. 9.
    Zhang, S.C., Li, J., Luo, J., Wang, W.L.: Failure analysis of rear axle shaft of an automobile. Heat Treat. Metals 35, 111–114 (2010)Google Scholar
  10. 10.
    Liu, A.F.: Mechanics and Mechanisms of Fracture: An Introduction. ASM International, Materials Park (2005)Google Scholar
  11. 11.
    Flanders, N., Tennant, R., White, W.E.: Observations on relationships between microstructure and hydrogen-induced cracking, microstructural science, vol. 15, pp. 227–239. Blum, M.E., French, P.M., Middleton, R.N., Vander Voort G.F. (Eds.) ASM International, International Metallographic Society, Materials Park (1987)Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  1. 1.Center for Engineering Research, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations