Advertisement

Journal of Failure Analysis and Prevention

, Volume 13, Issue 3, pp 274–281 | Cite as

Failure Analysis of HP Turbine Blades in a Low Bypass Turbofan Engine

  • R. K. Mishra
  • Thomas Johney
  • K. Srinivasan
  • Nandi Vaishakhi
  • Bhat Raghavendra
Case History—Peer-Reviewed

Abstract

Failure of high pressure (HP) turbine blades in a low bypass turbofan engine is analyzed to determine its root cause. Forensic and metallurgical investigations are carried out on all the failed blades as well as the failed components of the downstream modules. Fatigue failure of one HP turbine blade at dovetail region is found to be the primary failure. This failure has caused extensive damages in high- and low-pressure turbine modules. Remedial measures are also suggested to prevent such failures.

Keywords

Blade Fatigue failure Fractography Gas turbine 

Notes

Acknowledgments

The authors are very grateful to the Executive Director, Engine Division, Hindustan Aeronautics Limited; General Manager, Foundry & Forge Division, Hindustan Aeronautics Limited; and Chief Executive (Airworthiness), CEMILAC for their kind permission for publishing this article.

References

  1. 1.
    Cowles, B.A.: High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996)CrossRefGoogle Scholar
  2. 2.
    Ozaltun, H., Jeremy Seidt, M. et al.: An energy-based method for uni-axial fatigue life calculation, GT2009-59512. In: Proceedings of ASME Turbo Expo 2009, June 2009, Orlando, FL, USAGoogle Scholar
  3. 3.
    Koul, A.K. et al.: Residual life assessment and life cycle management of design life expired discs, GT2009-60352. In: Proceedings of ASME Turbo Expo 2009, June 2009, Orlando, FL, USAGoogle Scholar
  4. 4.
    Poursaeidi, E., Aieneravaie, M., Mohammadi, M.R.: Failure analysis of a second stage blade in a gas turbine engine. J. Eng. Fail. Anal. 15(8), 1111–1129 (2008)CrossRefGoogle Scholar
  5. 5.
    Hour, J., Wicks, B.J., Antoniou, R.A.: An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. J. Eng. Fail. Anal. 9(2), 201–211 (2002)CrossRefGoogle Scholar
  6. 6.
    Kazempour-Liacy, H., Abouali, S., Akbari-Garakani, M.: Failure analysis of a first stage gas turbine blade. J. Eng. Fail. Anal. 18(1), 517–522 (2011)CrossRefGoogle Scholar
  7. 7.
    Suresh, S.: Fatigue of Materials, 2nd edn, pp. 256–257. Cambridge University Press, Cambridge (2003)Google Scholar
  8. 8.
    Bannantine, J.A., Comer, J.J., Handrock, J.L.: Fundamental of metal fatigue analysis, pp. 40–87. Prentice Hall Inc., Englewood Cliffs (1990)Google Scholar
  9. 9.
    Daily, J.S., Klingbeil, N.W.: Determining the scatter in fatigue crack growth rate based on variations in bulk property data, GT2009-59117. In: Proceedings of ASME Turbo Expo 2009, 8–12 June 2009, Orlando, FL, USAGoogle Scholar
  10. 10.
    Eliaz, N., Shemesh, G., Latanision, R.M.: Hot corrosion in gas turbine components. J. Eng. Fail. Anal. 9(1), 31–43 (2002)CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • R. K. Mishra
    • 1
  • Thomas Johney
    • 2
  • K. Srinivasan
    • 2
  • Nandi Vaishakhi
    • 3
  • Bhat Raghavendra
    • 3
  1. 1.Regional Centre for Military Airworthiness (Engines)—CEMILACBangaloreIndia
  2. 2.Engine DivisionHindustan Aeronautics LimitedBangaloreIndia
  3. 3.Foundry & Forge DivisionHindustan Aeronautics LimitedBangaloreIndia

Personalised recommendations