Journal of Failure Analysis and Prevention

, Volume 12, Issue 2, pp 190–197 | Cite as

Failure Analysis and Life Assessment of Coating: The Use of Mixed Mode Stress Intensity Factors in Coating and Other Surface Engineering Life Assessment

Technical Article---Peer-Reviewed

Abstract

Unlike metals, where failure analysis and life assessment methods are quite established, the failure analysis and life assessment of coatings are often underrated and disregarded. This research encourages failure analysts to realize and avail the opportunity provided by an alternative approach. The authors use energy density mechanics concepts to develop a new parameter in coating blistering. A mixed mode stress intensity factor is used as a basis for the derivation. This new parameter will be useful for the researchers and practitioners engaged in coating life assessment. It is recommended that the assessor combines field-determined adhesion strength values and blister evaluation, together with laboratory-derived strain energy density data, to quantitatively predict remaining coating life. This approach also provides a tool in failure analysis.

Keywords

Failure analysis Coating degradation Energy density mechanics Life assessment Mixed mode Stress intensity factor 

Notes

Acknowledgments

Funding by the MOHE (Ministry of Higher Education) Government of Malaysia through Research University Grant (RUG-GUP) UTM number Q. J130000. 7124. 00H14, under the title of Degradation of corrosion protective coatings on steel: computational and experimental approaches to blistering formation and development is gratefully acknowledged.

References

  1. 1.
    Lee, T.H., Lee, U.C.: Safeguard assessment for life extension in nuclear power plants (NPPS) using a production function. Nucl. Eng. Des. 241(3), 826–831 (2011)CrossRefGoogle Scholar
  2. 2.
    Andrae, A., Andersen, O.: Life cycle assessment of integrated circuit packaging technologies. Int. J. Life Cycle Assess. 16(3), 258–267 (2011)Google Scholar
  3. 3.
    Puri, P., Compston, P., Pantano, V.: Life cycle assessment of Australian automotive door skins. Int. J. Life Cycle Assess. 14(5), 420–428 (2010)Google Scholar
  4. 4.
    Committee on Research Opportunities in Corrosion Science, Engineering, and National Research Council: Research Opportunities in Corrosion Science and Engineering. National Academies Press (2011)Google Scholar
  5. 5.
    Gustafsson, L., Börjesson, P.: Life cycle assessment in green chemistry. Int. J. Life Cycle Assess. 12(3), 151–159 (2007)Google Scholar
  6. 6.
    Unnanuntana, A., Gladnick, B., Donnelly, E., Lane, J.: The assessment of fracture risk. J. Bone Joint Surg. Am. Vol. 92(3), 743–753 (2010)CrossRefGoogle Scholar
  7. 7.
    Tay, F.R., Lai, C., Chersoni, S.: Osmotic blistering in enamel bonded with one-step self-etch adhesives. J. Dent. Res. 83(7), 290–295 (2004)Google Scholar
  8. 8.
    Haillant, O.: Accelerated weathering testing principles to estimate the service life of organic pv modules. Sol. Energy Mater. Sol. Cells 95(5), 1284–1292 (2011)Google Scholar
  9. 9.
    ASTM: Standard practice for cyclic salt fog/uv exposure of painted metal (alternating exposures in a fog/dry cabinet and a UV/condensation cabinet). In: ASTM:D5894. ASTM International Publisher, West Conshohocken (2009)Google Scholar
  10. 10.
    ASTM: Standard practice for modified salt spray (fog) testing. In: ASTM:G5. ASTM International Publisher, West Conshohocken (2009)Google Scholar
  11. 11.
    ASTM: Standard test method for evaluation of painted or coated specimens subjected to corrosive environments. In: ASTM:D1654. ASTM International Publisher, West Conshohocken (2008)Google Scholar
  12. 12.
    Skerry, B.S., Simpson, C.H., Wilson, G.R.: Combined corrosion/weathering testing of coated steel products for automotive applications. In: Proceedings—Society of Automotive Engineers, pp. 143–153 (1991)Google Scholar
  13. 13.
    Simpson, C.H., Ray, C.J., Skerry, B.S.: Accelerated corrosion testing of industrial maintenance paints using a cyclic corrosion weathering method. J. Prot. Coat. Linings 8(5), 28–36 (1991). Cited By (since 1996): 23Google Scholar
  14. 14.
    Chong, S.-L.: Comparison of accelerated tests for steel bridge coatings in marine environments. J. Prot. Coat. Linings 14(3) (1997)Google Scholar
  15. 15.
    Volokh, K.Y.: Nonlinear elasticity for modeling fracture of isotropic brittle solids. J. Appl. Mech. 71(1), 141–143 (2004)CrossRefGoogle Scholar
  16. 16.
    Greenwood, J.A., Johnson, K.L.: The mechanics of adhesion of viscoelastic solids. Philos. Mag. A 43(3), 697–711 (1981)CrossRefGoogle Scholar
  17. 17.
    Gerberich, W.W., Cordill, M.J.: Physics of adhesion. Rep. Prog. Phys. 69(7), 2157–2203 (2006)CrossRefGoogle Scholar
  18. 18.
    Kanis, J., Johansson, H., Oden, A., McCloskey, E.: Assessment of fracture risk. Eur. J. Radiol. 71(3), 392–397 (2009)CrossRefGoogle Scholar
  19. 19.
    Duan, K., Hu, X., Stachowiak, G.: Modified essential work of fracture model for polymer fracture. Compos. Sci. Technol. 66(16), 3172–3178 (2006)CrossRefGoogle Scholar
  20. 20.
    Volinsky, A., Vella, J., Gerberich, W.: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2), 201–210 (2003)CrossRefGoogle Scholar
  21. 21.
    Schmidt, I., Fleck, N.A.: Ductile fracture of two-dimensional cellular structures—dedicated to Prof. Dr.-Ing. D. Gross on the occasion of his 60th birthday. Int. J. Fract. 111(4), 327–342 (2001)CrossRefGoogle Scholar
  22. 22.
    Gao, H.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138(1–4), 101–137 (2006)CrossRefGoogle Scholar
  23. 23.
    Zuo, J., Sutton, M.A., Deng, X.: Basic studies of ductile failure processes and implications for fracture prediction. Fatigue Fract. Eng. Mater. Struct. 27, 231–243 (2004)CrossRefGoogle Scholar
  24. 24.
    Togashi, H., Sakisaka, T., Takai, Y.: Cell adhesion molecules in the central nervous system. Cell Adhes. Migr. 3(1), 29–35 (2009)CrossRefGoogle Scholar
  25. 25.
    Dias da Costa, D., Alfaiate, J., Sluys, L., J’ulio, E.: A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements. Int. J. Fract. 161(1), 97–119 (2010)CrossRefGoogle Scholar
  26. 26.
    Chen, J., Lee, J.D.: Multiscale modeling of fracture of MgO: sensitivity of interatomic potentials. Theor. Appl. Fract. Mech. 53(1), 74–79 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Cole, P., Nagpal, U., Macosko, C., Lodge, T.: Direct correlation between adhesion promotion and coupling reaction at immiscible polymer-polymer interfaces. J. Adhes. 82(9), 887–902 (2006)CrossRefGoogle Scholar
  28. 28.
    Lilliu, G., van Mier, J.: 3D lattice type fracture model for concrete. Eng. Fract. Mech. 70(7–8), 927–941 (2003)CrossRefGoogle Scholar
  29. 29.
    Bolander, J., Saito, S.: Fracture analyses using spring networks with random geometry. Eng. Fract. Mech. 61(5–6), 569–591 (1998)CrossRefGoogle Scholar
  30. 30.
    Jirásek, M., Bažant, Z.: Macroscopic fracture characteristics of random particle systems. Int. J. Fract. 69(3), 201–228 (1994)CrossRefGoogle Scholar
  31. 31.
    Cho, K., Cho, E.: Effect of the microstructure of copper oxide on the adhesion behavior of epoxy/copper leadframe joints. J. Adhes. Sci. Technol. 14, 1333–1353 (2000)CrossRefGoogle Scholar
  32. 32.
    Gent, A.N., Schultz, J.: Effect of wetting liquids on the strength of adhesion of viscoelastic material. J. Adhes. 3(4), 281–294 (1972)CrossRefGoogle Scholar
  33. 33.
    Lee, H.Y., Qu, J.: Microstructure, adhesion strength and failure path at a polymer/roughened metal interface. J. Adhes. Sci. Technol. 17, 195–215 (2003)CrossRefGoogle Scholar
  34. 34.
    Azari, S., Eskandarian, M., Papini, M., Schroeder, J.A., Spelt, J.K.: Fracture load predictions and measurements for highly toughened epoxy adhesive joints. Eng. Fract. Mech. 76(13), 2039–2055 (2009)CrossRefGoogle Scholar
  35. 35.
    McGeorge, D.: Inelastic fracture of adhesively bonded overlap joints. Eng. Fract. Mech. 77(1), 1–21 (2010)CrossRefGoogle Scholar
  36. 36.
    Leguillon, D., Piat, R.: Fracture of porous materials—influence of the pore size. Eng. Fract. Mech. 75(7), 1840–1853 (2008)CrossRefGoogle Scholar
  37. 37.
    Majumdar, J.D.: Prospects and future applications for diode lasers in surface engineering. Surf. Eng. 23(2), 73–75 (2007)CrossRefGoogle Scholar
  38. 38.
    Podgornik, B., Vizintin, J., Hogmark, S.: Improvement in galling performance through surface engineering. Surf. Eng. 22(4), 235–238 (2006)CrossRefGoogle Scholar
  39. 39.
    Esfandiari, M., Dong, H.: Plasma surface engineering of precipitation hardening stainless steels. Surf. Eng. 22(2), 86–92 (2006)CrossRefGoogle Scholar
  40. 40.
    Sharma, A.K.: Surface engineering for thermal control of spacecraft. Surf. Eng. 21(3), 249–253 (2005)CrossRefGoogle Scholar
  41. 41.
    Nikolenko, S., Kuz’menko, A., Timakov, D., Abakymov, P.: Nanostructuring a steel surface by electrospark treatment with new electrode materials based on tungsten carbide. Surf. Eng. Appl. Electrochem. 47(3), 217–224 (2011)CrossRefGoogle Scholar
  42. 42.
    Shrestha, S.: Magnesium and surface engineering. Surf. Eng. 26(5), 313–316 (2010)CrossRefGoogle Scholar
  43. 43.
    Xu, B.S.: Development of surface engineering in china. Surf. Eng. 26(1–2), 123–125 (2010)CrossRefGoogle Scholar
  44. 44.
    Bell, T.: Thermochemical surface engineering 2005. Surf. Eng. 21(3), 161–162 (2005)CrossRefGoogle Scholar
  45. 45.
    Dongli, F.: Ifhtse global 21: heat treatment and surface engineering in the first decades of the twenty-first century: Part 2 heat treatment in china: present and future. Int. Heat Treat. Surf. Eng. 1(2), 53–59 (2007)Google Scholar
  46. 46.
    Ivanov, Yu., Kolubaeva, Yu., Konovalov, S., Koval’, N., Gromov, V.: Modification of steel surface layer by electron beam treatment. Met. Sci. Heat Treat. 1112, 569–574 (2008)Google Scholar
  47. 47.
    Stepanov, A.L., Popok, V.N.: Nanostructuring of silicate glass under low-energy Ag-ion implantation. Surf. Sci. 566–568(Part 2), 1250–1254 (2004)CrossRefGoogle Scholar
  48. 48.
    Raeker, T., Depristo, A.: Theoretical studies of dynamical phenomena in epitaxial surface systems. Surf. Sci. 248(1–2), 134–146 (1991)CrossRefGoogle Scholar
  49. 49.
    Du, H., Wei, Y., Lin, W., Liu, Z., Hou, L., Yang, W., An, Y.: One way of surface alloying treatment on iron surface based on surface mechanical attrition treatment and heat treatment. Appl. Surf. Sci. 255(20), 8660–8666 (2009)Google Scholar
  50. 50.
    Trtica, M., Gakovic, B., Batani, D., Desai, T., Panjan, P., Radak, B.: Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl. Surf. Sci. 253(5), 2551–2556 (2006)CrossRefGoogle Scholar
  51. 51.
    Khosroshahi, M.E., Mahmoodi, M., Tavakoli, J.: Characterization of Ti6Al4V implant surface treated by Nd:YAG laser and emery paper for orthopaedic applications. Appl. Surf. Sci. 253(21), 8772–8781 (2007)CrossRefGoogle Scholar
  52. 52.
    Cakmak, M., Srivastava, G.P.: Theoretical study of the GaAs(110)-(1x1)-H2S surface. Surf. Sci. 402–404, 658–662 (1998)CrossRefGoogle Scholar
  53. 53.
    Ferguson, P., Wallis, D.F., Hauvet, C.: Surface plasma waves in the noble metals. Surf. Sci. 82(1), 255–269 (1979)CrossRefGoogle Scholar
  54. 54.
    Yamada, T., Harada, N., Kitahara, K., Moritani, A.: Study of mechanism of plasma surface modifications in si by spectroscopic ellipsometry. Surf. Coat. Technol. 174–175, 854–857 (2003)CrossRefGoogle Scholar
  55. 55.
    Whitmore, L.: Surface structure of zinc oxide (?), using an atomistic, semi-infinite treatment. Surf. Sci. 498(1–2), 135–146 (2002)CrossRefGoogle Scholar
  56. 56.
    Gao, L., Liu, S.: Cross-linked polyacrylamide coating for capillary isoelectric focusing. Anal. Chem. 76(24), 7179–7186 (2004)CrossRefGoogle Scholar
  57. 57.
    Prawoto, Y.: Application of Linear Elastic Fracture Mechanics in Materials Science and Engineering. Lulu Enterprise, Raleigh (2011)Google Scholar
  58. 58.
    Prawoto, Y., Kamsah, N., Mat Yajid, M.A., Ahmad, Z.: Energy density mechanics applied to coating blistering problems. Theor. Appl. Fract. Mech. 56, 89–94 (2011)Google Scholar
  59. 59.
    Rice, J.: Some remarks on elastic crack-tip stress field. Int. J. Solids Struct. 8, 751–758 (1972)CrossRefGoogle Scholar
  60. 60.
    Bueckner, H.F.: On a class of singular integral equations. J. Math. Anal. Appl. 14(3), 392–426 (1966)CrossRefGoogle Scholar
  61. 61.
    Bueckner, H.F.: Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space. Int. J. Solids Struct. 23(1), 57–93 (1987)CrossRefGoogle Scholar
  62. 62.
    Bueckner, H.F.: Observations on weight functions. Eng. Anal. Bound. Elem. 6(1), 3–18 (1989)CrossRefGoogle Scholar
  63. 63.
    Sih, G.C., Moyer Jr., E.T.: Path dependent nature of fatigue crack growth. J. Eng. Fract. Mech. 3(17), 643–652 (1983)Google Scholar
  64. 64.
    Moyer Jr., E.T., Sih, G.C.: Fatigue analysis of an edge crack specimen: hysteresis strain energy density. J. Eng. Fract. Mech. 4(19), 269–280 (1984)Google Scholar
  65. 65.
    Sih, G.C., Jeong, D.Y.: Hysteresis loops predicted by isoenergy density theory for polycrystals. Part II: Cyclic heating and cooling effects predicted from non-equilibrium theory for 6061-T6 aluminum, SAE 4340 steel and Ti–8Al–1Mo–1V titanium cylindrical bars. Theor. Appl. Fract. Mech. 41, 267–289 (2004)Google Scholar
  66. 66.
    Sih, G.C., Jeong, D.Y.: Hysteresis loops predicted by isoenergy density theory for polycrystals. Part I: fundamentals of non-equilibrium thermal mechanical coupling effects. Theor. Appl. Fract. Mech. 41, 233–266 (2004)CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity Technology MalaysiaJohorMalaysia
  2. 2.Forensic Services (M) Sdn BhdKuala LumpurMalaysia

Personalised recommendations