Journal of Failure Analysis and Prevention

, Volume 11, Issue 6, pp 710–717 | Cite as

Failure Analysis of Howell-Bunger Valve Using Finite Element Method

  • Farid Vakili-Tahami
  • Mohammad Zehsaz
  • Mohammad-Ali Saeimi-Sadigh
  • Amin Paykani
Technical Article---Peer-Reviewed
  • 150 Downloads

Abstract

Fixed-cone (Howell-Bunger) valves have been in wide use for many years for flow control. These valves may face different types of damages and failures due to vibrational stresses during operation. In this study, a number of modal analyses of a Howell-Bunger (DN: 1000 mm) valve were conducted using the Finite Element Method (FEM), and its natural frequencies with vibrational mode shapes in five cases including fully opened, 20-, 40-, and 80%-opening conditions were determined; subsequently, the dimensionless coefficient “Mercer” was obtained for the valve. The result showed that the operating point of the valve is the flow rate of 16 m3/s and valve opening degree of 40%; in this case, due to reinforcement resulting from moving shell, the structure strength against vibration increases, and as a result, natural frequency increases as well.

Keywords

Failure Howell-Bunger valve Modal analysis Natural frequency 

Nomenclature

c

Mercer dimensionless coefficient

D

Nominal diameter of valve, m

E

Young’s module, Pa

f

Natural frequency, Hz

Q

Passing flow rate of fluid, m3/s

TV

Thickness of the vane, m

V

Fluid velocity, m/s

ρ

Density, kg/m3

Notes

Acknowledgment

The authors are grateful for technical and financial support provided by the Mechanic AB Co.

References

  1. 1.
    Mefford, B.W.: Submerged operation of the fixed-cone valve. Hydraulics Branch Official Copy. PAP 560 (1982)Google Scholar
  2. 2.
    Mercer, A.G.: Turbulent Boundary Layer Flow Over a Flat Plate Vibrating with Transverse Standing Waves, ST. Technical Paper Number 41B. Anthony Falls Hydraulic Laboratory, University of Minnesota (1962)Google Scholar
  3. 3.
    Skousen, P.L.: Valve Handbook. McGraw-Hill Professional Publishing (2004). ISBN-9780071437738Google Scholar
  4. 4.
    Smith, P., Zappe, R.W.: Valve Selection Handbook, 5th edn. Engineering Fundamentals for Selecting the Right Valve Design for Every Industrial Flow Application. Gulf Professional Publishing (2003)Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • Farid Vakili-Tahami
    • 1
  • Mohammad Zehsaz
    • 1
  • Mohammad-Ali Saeimi-Sadigh
    • 2
  • Amin Paykani
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Mechanical Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations