Advertisement

Journal of Failure Analysis and Prevention

, Volume 11, Issue 4, pp 446–451 | Cite as

Failure Analysis of Tuna Cans

  • S. Barella
  • S. Cincera
  • M. Boniardi
  • M. Bellogini
  • S. Gelati
  • A. Montanari
Technical Article---Peer-Reviewed

Abstract

A metal container used for food packaging must preserve the food’s edibility characteristics for a long period of time. Lacquered tinplate is suitable for canning food provided that the cans are airtight. This article details a root cause failure analysis that was conducted utilizing a sample of tuna cans taken from an affected batch of one million units. Several examinations were carried out to identify the failure’s root cause: visual examination, SEM fractography, micro-hardness measurement, and microstructural characterization. The cracks are located in the HAZ of the welded zone. As a result of the examinations carried out, the authors were able to identify the cause of the primary failure. The identified fracture mechanism is that of stress corrosion cracking (SCC), due to both the aggressive environment (high water content in the oil) and the low lacquer adhesion caused by superficial welding irregularities.

Keywords

Can Stress corrosion cracking Lacquer Welding 

References

  1. 1.
    Gelati, S., Penalba, F., Gomez, X., Ferretti, C., Montanari, A.: Stress corrosion cracking in tinplate destined for legume and pet food packaging. Corros. Eng. 41, 297–303 (2006)CrossRefGoogle Scholar
  2. 2.
    Beese, R.E., Ludwigsen, R.J.: Chemistry of Food Packaging, pp. 1–14. American Chemical Society, Washington D.C. (1974)Google Scholar
  3. 3.
    Barilli, F., Fragni, R., Gelati, S., Montanari, A.: Study on the adhesion of different types of lacquers used in food packaging. Prog. Org. Coat. 46, 91–96 (2003)CrossRefGoogle Scholar
  4. 4.
    Pournaras, A., Prodromidis, M.I., Katsoulidis, A.P., Badeka, A.V., Georgantelis, D., Kontominas, M.G.: Evaluation of lacquered tinplated cans containing octopus in brine by employing x-ray microanalysis and electrochemical impedance spectroscopy. J. Food Eng. 86, 460–464 (2008)CrossRefGoogle Scholar
  5. 5.
    Charbonneau, J.E.: Recent case histories of food product–metal container interactions using scanning electron microscopy–x-ray microanalysis. Scanning 19, 512–518 (2006)CrossRefGoogle Scholar
  6. 6.
    Kontominas, M.G., Prodromidis, M.I., Paleologos, E.K., Badeka, A.V., Georgantelis, D.: Investigation of fish product–metal container interaction using scanning electron microscopy–x-ray microanalysis. Food Chem. 98, 225–230 (2006)CrossRefGoogle Scholar
  7. 7.
    Montanari, A., Pezzani, A., Cassarà, A., Quaranta, A., Lupi, R.: Quality of organic coatings for food cans: evaluation techniques and prospects of improvement. Prog. Org. Coat. 29, 159–165 (1996)CrossRefGoogle Scholar
  8. 8.
    Arcangeli, G., Baldrati, G., Pirazzoli, P.: La trasformazione dei prodotti della pesca: tecnologia, controllo e igiene di lavorazione, pp. 260–261. Stazione Sperimentale per l’Industria delle Conserve Alimentari, Parma (2003); in ItalianGoogle Scholar
  9. 9.
    ASM Handbook, Corrosion: Fundamentals, Testing, and Protection, ASM International, USA (2003)Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • S. Barella
    • 1
  • S. Cincera
    • 1
  • M. Boniardi
    • 1
  • M. Bellogini
    • 1
  • S. Gelati
    • 2
  • A. Montanari
    • 2
  1. 1.Dipartimento di MeccanicaPolitecnico di MilanoMilanoItaly
  2. 2.Stazione Sperimentale per l’Industria delle Conserve Alimentari di ParmaParmaItaly

Personalised recommendations