Advertisement

Journal of Failure Analysis and Prevention

, Volume 10, Issue 6, pp 515–519 | Cite as

Effect of Al(OH)3 Particle Fraction on Mechanical Properties of Particle-Reinforced Composites Using Unsaturated Polyester as Matrix

  • Quanlin Zhao
  • Zhijun Jia
  • Xiaogang Li
  • Zhengfang Ye
Technical Article---Peer-Reviewed

Abstract

The effect of particle fraction on mechanical properties of particle-reinforced composites was studied using tensile and hardness testing. Unsaturated polyester (UP) was used as polymer matrix, and aluminum hydroxide as the reinforcing particles. The fracture morphology of tensile samples was observed by scanning electron microscopy (SEM). The results showed that the tensile strength and absorbed energy increased to a maximum at 10% particle content and then decreased. With increasing content of aluminum hydroxide, the elastic modulus increased, and the fracture elongation decreased. The SEM showed that the failure of the Al(OH)3/UP composites was one of macroscopically brittle fracture. In addition, the study showed that appropriate amount of filler can enhance the surface hardness of Al(OH)3/UP composite.

Keywords

Particle-reinforced composites Mechanical properties Hardness testing Scanning electron microscopy (SEM) 

Notes

Acknowledgments

This study was financially supported by National Natural Science Foundation of China (No. 50499333) and National R&D Infrastructure and Facility Development Program of China (No. 2005DKA10400).

References

  1. 1.
    Kwon, S.C., Adachi, T., Araki, W., Yamaji, A.: Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites. Compos. Part B 39, 740–746 (2007)CrossRefGoogle Scholar
  2. 2.
    Homaeigohar, S.S., Sadi, A.Y., Javadpour, J., Khavandi, A.: The effect of reinforcement volume fraction and particle size on the mechanical properties of β-tricalcium phosphate–high density polyethylene composites. J. Eur. Ceram. Soc. 26, 273–278 (2006)CrossRefGoogle Scholar
  3. 3.
    Wang, H.Y., Bai, Y.L., Liu, S., Wu, J.L., Wong, C.P.: Combined effects of silica filler and its interface in epoxy resin. Acta. Mater. 50, 4369–4377 (2002)CrossRefGoogle Scholar
  4. 4.
    Bleach, N.C., Nazhat, S.N., Tanner, K.E., Kellomaki, M., Tormala, P.: Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials 23, 1579–1585 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Zeng, X.H., Fan, H.Q., Zhang, J.: Prediction of the effects of particle and matrix morphologies on Al2O3 particle/polymer composites by finite element method. Comput. Mater. Sci. 40, 395–399 (2007)CrossRefGoogle Scholar
  6. 6.
    Imanaka, M., Takeuchi, Y., Nakamura, Y., Nishimura, A., Iida, T.: Fracture toughness of spherical silica-filled epoxy adhesives. Int. J. Adhes. Adhes. 21, 389–396 (2001)CrossRefGoogle Scholar
  7. 7.
    Cheang, P., Khor, K.A.: Effect of particulate morphology on the tensile behaviour of polymer-hydroxyapatite composites. Mat. Sci. Eng. A 345, 47–54 (2003)CrossRefGoogle Scholar
  8. 8.
    Nakamuru, Y., Yamaguchi, M., Okubo, M., Matsumoto, T.: Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. J. Appl. Polym. Sci. 45, 1281–1289 (1992)CrossRefGoogle Scholar
  9. 9.
    Vasconcelos, P.V., Lino, F.J., Magalhaes, A., Neto, R.J.L.: Impact fracture study of epoxy-based composites with aluminium particles and milled fibres. J. Mater. Process. Technol. 170, 277–283 (2005)CrossRefGoogle Scholar
  10. 10.
    Debnath, S., Ranade, R., Wunder, S.L., McCool, J., Boberick, K., Baran, G.: Interface effects on mechanical properties of particle-reinforced composites. Dent. Mater. 20, 677–686 (2004)CrossRefPubMedGoogle Scholar
  11. 11.
    Gong, G., Xie, B.H., Yang, M.B., Yang, W., Zhang, W.Q., Zhao, M.: Mechanical properties and fracture behavior of injection and compression molded polypropylene/coal gangue powder composites with and without a polymeric coupling agent. Compos. Part A 38, 1683–1693 (2007)CrossRefGoogle Scholar
  12. 12.
    Juhasz, J.A., Best, S.M., Brooks, R., Kawashita, M., Miyata, N., Kokubo, T., Nakamura, T., Bonfield, W.: Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials 25, 949–955 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B 39, 933–961 (2008)CrossRefGoogle Scholar
  14. 14.
    Nunes, R.C.R., Fonseca, J.L.C., Pereira, M.R.: Polymer–filler interactions and mechanical properties of a polyurethane elastomer. Polym. Test. 19, 93–103 (2000)CrossRefGoogle Scholar
  15. 15.
    Yan, W., Lin, R.J.T., Bhattacharyya, D.: Particulate reinforced rotationally moulded polyethylene composites—mixing methods and mechanical properties. Compos. Sci. Technol. 66, 2080–2088 (2006)CrossRefGoogle Scholar
  16. 16.
    Oh, K.H., Han, K.S.: Short-fiber/particle hybrid reinforcement: effects on fracture toughness and fatigue crack growth of metal matrix composites. Compos. Sci. Technol. 67, 1719–1726 (2007)CrossRefGoogle Scholar
  17. 17.
    Bakar, M.S.A., Cheang, P., Khor, K.A.: Tensile properties and microstructural analysis of spheroidized hydroxyapatite–poly(etheretherketone)biocomposites. Mater. Sci. Eng. A 345, 55–63 (2003)CrossRefGoogle Scholar
  18. 18.
    Kontou, E.: Micromechanics model for particulate composites. Mech. Mater. 39, 702–709 (2007)CrossRefGoogle Scholar
  19. 19.
    Rao, G.V.G., Mahajan, P., Bhatnagar, N.: Micro-mechanical modeling of machining of FRP composites–Cutting force analysis. Compos. Sci. Technol. 67, 579–593 (2007)CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • Quanlin Zhao
    • 1
    • 3
  • Zhijun Jia
    • 2
  • Xiaogang Li
    • 2
  • Zhengfang Ye
    • 1
    • 3
  1. 1.Department of Environmental EngineeringPeking UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.The Key Laboratory of Water and Sediment SciencesMinistry of EducationBeijingChina

Personalised recommendations