Skip to main content
Log in

Failure Analysis of Thermal Actuators, Comb Drives, and Other Microelectromechanical Elements

  • Peer Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This paper reports on an investigation in which several standard Microelectromechanical Systems (MEMS) elements consisting of thermal actuators, inchworm drives, and comb drives were subjected to vibration loading representative of the environment seen in space applications. Finite-element analysis of the MEMS devices showed that sufficient margins existed under the expected environmental loading. Vibration testing, however, resulted in several failures in the devices, and analysis showed that progressive failure initiated from large local displacements. Debris transport and entrapment was another source of failure leading to shorting of thermal actuators. The results illustrate the importance of debris control and packaging design for reliable MEMS operation. Suggestions for improving the reliability of MEMS devices through practical layout and packaging guidelines are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Petersen, K.: Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

    Article  CAS  Google Scholar 

  2. Janson, S., Helvajian, H., Amimoto, S., Smit, G., Mayer, D., Feuerstein, S.: Microtechnology for space systems. In: Wright, R.P. (ed.) Proc. of the 1998 IEEE Aerospace Conference, 1, pp. 409–418. IEEE, Piscataway, NJ, USA (1998).

    Google Scholar 

  3. Benoit, J.: Micro and nanotechnologies: a challenge on the way forward to new markets. Mater. Sci. Eng.: B 51, 254–257 (1998).

    Article  Google Scholar 

  4. Cass, S.: MEMS in space. IEEE Spectrum July 56–61 (2001).

  5. George, T.: Overview of MEMS/NEMS technology development for space applications at NASA/JPL. In: Chiao, J.C. (ed.) Proc. on Smart Sensors, Actuators and MEMS, 5116, pp. 136–148. SPIE, Bellingham, WA, USA (2003) .

    Google Scholar 

  6. Rossi, C., Do Conto, T., Estève, D., Larangot, B.: Design, fabrication and modelling of MEMS-based microthrusters for space application. Smart Mater. Struct. 10, 1156–1162 (2001).

    Article  CAS  Google Scholar 

  7. Brown, E.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microwave Theory Tech 46(11 pt.2), 1868–1880 (1998).

    Article  CAS  Google Scholar 

  8. Miller, L.M.: MEMS for space applications. In: Courtois, B. (ed.) Proc. of the 1999 Design, Test, and Microfabrication of MEMS and MOEMS, 3680(1), pp. 2–11. SPIE, Bellingham, WA, USA (1999) .

    Google Scholar 

  9. Man, K.F.: MEMS reliability for space applications by elimination of potential failure modes through testing and analysis. In: Lawton, R.A. (ed.) Proc. on MEMS Reliability for Critical and Space Applications, 3880, pp. 120–129. SPIE, Bellingham, WA, USA (1999) .

    Google Scholar 

  10. Schmitt, P., Lafontan, X., Pressecq, F., Kurz, B., Oudea, C., Estève, D., Fourniols, J.Y., Camon, H.: Impact of space environmental conditions on the reliability of a MEMS COTS based system. Microelect. Reliab. 44, 1739–1744 (2004).

    Article  Google Scholar 

  11. Shea, H.R.: Reliability of MEMS for space applications. In: Tanner, D.M. (ed.) Proc. on Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, 6111, pp. 61110A-1-10. SPIE, Bellingham, WA, USA (2006) .

  12. Stark, J.P.W.: The space environment and its effects on spacecraft design. In: Fortescue, P., Stark, J. (eds.) Spacecraft Systems Engineering, pp. 9–32. Wiley, New York, USA (1991).

    Google Scholar 

  13. Muller, L., Hecht, M.H., Miller, L.M., Rockstad, H.K., Lyke, J.C.: Packaging and qualification of MEMS-based space systems. In: Proc. of the IEEE Micro Electro Mechanical Systems (MEMS) 1996, pp. 503–508. IEEE, Piscataway, NJ, USA (1996).

  14. Knudson, A.R., Buchner, S., McDonald, P., Stapor, W.J., Campbell, A.B., Grabowski, K.S., Knies, D.L.: The effects of radiation on MEMS accelerometers. IEEE Trans. Nucl. Sci. 43(n.6 Pt 1), 3122–3126 (1996).

    Article  CAS  Google Scholar 

  15. Lee, C.I., Johnston, A.H., Tang, W.C., Barnes, C.E., Lyke, J.: Total dose effects on microelectromechanical systems (MEMS): accelerometers. IEEE Trans. Nucl. Sci. 43(n.6 pt 1), 3127–3132 (1996).

    Article  Google Scholar 

  16. Lyke, J., Forman, G.: Space electronic packaging research and engineering. In: Helvajian, H. (ed.) Microengineering Aerospace Systems, pp. 259–346. Aerospace Press, El Segundo, CA, USA (1999).

    Google Scholar 

  17. Koester, D.A., Mahadevan, R., Hardy, B., Markus, K.W.: MUMPS Design Handbook Revision 7, http://www.memsrus.com/ (2002).

  18. Comtois, J.H., Michalicek, M., Barron, A., Craig, C.: Electrothermal actuators fabricated in four-level planarized surface micromachined polycrystalline silicon. Sensors Actuators A 70, 23–31 (1997).

    Article  Google Scholar 

  19. Comtois, J.H., Bright, V.M.: Applications for surface-micromachined polysilicon thermal actuators and arrays. Sensors Actuators A 58, 19–25 (1997).

    Article  Google Scholar 

  20. Sharpe, W.N. Jr., Yuan, B., Vaidyanathan, R., Edwards, R.L.: Measurement of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon. In: Proc of the Tenth IEEE Annual International Workshop on Micro Electro Mechanical Systems, pp. 42–429. IEEE, Piscataway, NJ, USA (1997).

Download references

Acknowledgments

The preceding work was performed under grant C00-213 of the California Space Authority’s Competitive Space Grant Program with close collaboration of Space Systems/Loral, Palo Alto, CA, USA). Assistance provided by Jun-Hyuk Choi and Matt Last of the Berkeley Composites Laboratory, Mechanical Engineering Department, University of California at Berkeley, Berkeley, CA, USA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. H. Dharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, T.F., Weber, K. & Dharan, C.K.H. Failure Analysis of Thermal Actuators, Comb Drives, and Other Microelectromechanical Elements. J Fail. Anal. and Preven. 7, 137–143 (2007). https://doi.org/10.1007/s11668-007-9018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-007-9018-4

Keywords

Navigation