Advertisement

Journal of Failure Analysis and Prevention

, Volume 7, Issue 1, pp 56–65 | Cite as

Effects of Temperature on Failure Modes for a Nickel-Base Disk Superalloy

  • T. P. Gabb
  • J. Telesman
  • P. T. Kantzos
  • A. Garg
Peer Reviewed

Abstract

Increasing service temperatures of gas turbine engines can improve performance and efficiency. Therefore, advanced alloys are being considered for higher-temperature applications than previously encountered. To support these higher-temperature applications, failure mode assessments on specimens tested in laboratory test machines can help in understanding prospective failure scenarios. The effects of temperature on tensile, creep, low-cycle fatigue, and fatigue crack growth failure modes were evaluated for an advanced powder metallurgy disk superalloy ME3. Conventional tests were performed at temperatures up to 815 °C on specimens extracted from supersolvus heat treated disks. The failure modes were compared with increasing temperature for each test type. Fractographic evaluations indicate the failure modes were shifted by increasing temperature, and eventually became environment-assisted, surface crack initiated failures.

Keywords

Superalloy Disk Failure 

References

  1. 1.
    Huron, E.S., Bain, K.R., Mourer, D.P., Schirra, J.J., Reynolds, P.L., Montero, E.E.: In: Green, K.A., Pollock, R.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, Tenth International Symposium, pp. 73–82. The Minerals, Metals, and Materials Society, Warrendale, PA (2004)Google Scholar
  2. 2.
    Groh, J.R., Mourer, D.P.: In: Green, K.A., Pollock, R.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, Tenth International Symposium, pp. 101–108. The Minerals, Metals, and Materials Society, Warrendale, PA (2004)Google Scholar
  3. 3.
    Hardy, M.C., Zirbel, B., Shen, G., Shankar, R.: In: Green, K.A., Pollock, R.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, Tenth International Symposium, pp. 83–90. The Minerals, Metals, and Materials Society, Warrendale, PA (2004)Google Scholar
  4. 4.
    Gabb, T.P., Telesman, J., Kantzos, P.T., O’Connor, K.: “Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3” (Report NASA/TM-2002–211796, National Aeronautics and Space Administration, 2002)Google Scholar
  5. 5.
    Mourer, D.P., Williams, J.L.: In: Green, K.A., Pollock, R.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, Tenth International Symposium, pp. 401–408. The Minerals, Metals, and Materials Society, Warrendale, PA (2004)Google Scholar
  6. 6.
    Weimer, M.J., Nagaraj, B.A., Schaeffer, J.C., Heaney, J.A.: U.S. Patent 6,532,657, 2003Google Scholar
  7. 7.
    Vanstone, R.H., Richardson, T.L.: ASTM STP 877, Automated Test Methods for Fracture and Fatigue Crack Growth, pp. 148–166. American Society for Testing and Materials, W. Conshohocken, PA (1985)Google Scholar
  8. 8.
    Gabb, T.P., Garg, A., Ellis, D.L., O’Connor, K.M.: Detailed Microstructural Characterization of the Disk Alloy ME3 (Report NASA/TM-2004-213066, National Aeronautics and Space Administration, 2005) Google Scholar
  9. 9.
    Chang, D.R., Krueger, D.D., Sprague, R.A.: In: Gell, M., Kortovich, C.S., Bricknell, R.H., Kent, W.B., Radavich, J.F. (eds.) Fifth International Symposium on Superalloys, pp. 245–252. The Materials Society, Warrendale, PA (1984)Google Scholar
  10. 10.
    Gabb, T.P., Telesman, J., Kantzos, P.T., Smith, J.W., Browning, P.F.: In: Green, K.A., Pollock, R.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., Walston, S. (eds.) Superalloys 2004, Tenth International Symposium, pp. 269–274. The Minerals, Metals, and Materials Society, Warrendale, PA (2004)Google Scholar
  11. 11.
    Bain, K.R., Gambone, M.L., Hyzak, J.M., Thomas, M.C.: In: Reichman, S., Duh, D.N., Maurer, G., Antolovich, S., Lund, C. (eds.) Superalloys 1988, Sixth International Symposium on Superalloys, pp. 13–22. The Materials Society, Warrendale, PA (1988)Google Scholar
  12. 12.
    Gayda, J., Gabb, T.P., Miner, R.V.: In: Solomon, H.D., Halford, G.R., Kaisand, L.R., Leis, B.N. (eds.) ASTM STP 942, Low Cycle Fatigue, pp. 293–309. American Society for Testing and Materials, Conshohocken, PA (1988)Google Scholar

Copyright information

© ASM International 2007

Authors and Affiliations

  • T. P. Gabb
    • 1
  • J. Telesman
    • 1
  • P. T. Kantzos
    • 2
  • A. Garg
    • 3
  1. 1.NASA Glenn Research CenterClevelandUSA
  2. 2.Honeywell AerospacePhoenixUSA
  3. 3.University of ToledoClevelandUSA

Personalised recommendations