Journal of Thermal Spray Technology

, Volume 6, Issue 3, pp 320–326 | Cite as

Alumina-base plasma-sprayed materials part I: Phase stability of alumina and alumina-chromia

  • P. Chráska
  • J. Dubsky
  • K. Neufuss
  • J. Písacka
Article

Abstract

Aluminum oxide is a relatively cheap, abundant material that is widely used for plasma- spray applications. This material, however, exists in many crystallographic modifications with different properties. In addition, most of these modifications are metastable and cannot be used in applications employed at elevated temperatures. Usually γ, δ, or other phases form after spraying, while α phase (corundum) is often the most desirable phase due to high corrosion resistance and hardness. This paper first reviews the method of α stabilization in the as- sprayed materials offered in literature. Then, as an example, it summarizes the results of an extensive study of chromia additions to alumina. Chromia was chosen because of its complete solid solubility in alumina and its crystal lattice type, which is similar to that of alumina. It was demonstrated that the addition of approximately 20 wt% chromia results in the formation of one solid solution of (Al- Cr)2O3 in the α- modification.

Finally, this paper discusses the thermal stability of various alumina phases. Phase change routes of heating for different starting alumina modifications are discussed, and a case study of alumina- chromia is presented. Both types of as-sprayed structures, a mixture of α, δ, and γ phases, and 100% (Al- Cr)2O3 were annealed up to 1300 °C and the phase composition checked. At lower temperatures and shorter holding times, the amount of α phase decreases while another metastable θ phase appears, and the fraction of γ + δ, if present, increases. At temperature above 1100 °C, the amount of α phase increases again.

Keywords

alumina oxide ceramics phase composition temperature stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Ceramic Steel?, Nature, Vol 258,1975, p 703–704CrossRefGoogle Scholar
  2. 2.
    J.R. Brandon and R. Taylor, Thermal Properties of Ceria and Yttria Partially Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., Vol 39,40,1989, p 143–151CrossRefGoogle Scholar
  3. 3.
    Powder Diffraction File, Alphabetical index, JCPDS, International Centre for Diffraction Data, PA, USA, 1986Google Scholar
  4. 4.
    P. Chráska, J. Dubsky, B. Kolman, J. Ilavsky, and J. Forman, Study of Phase Changes in Plasma Sprayed Deposits, J. Therm. Spray Technol.,, Vol 1 (No. 4), 1992, p 301–306Google Scholar
  5. 5.
    C.X. Ding, R.A. Zatorski, and H. Herman, Oxide Powders for Plasma Spraying—The Relationship between Powder Characteristic and Coating Properties, Thin Solid Films, Vol 118, 1984, p 467–475CrossRefGoogle Scholar
  6. 6.
    N.N. Ault, Characteristics of Refractory Oxide Coatings Produced by Flame-Spraying, J. Am. Ceram. Soc, Vol 40 (No. 3), 1957, p 69–74CrossRefGoogle Scholar
  7. 7.
    J. Dubsky, B. Kolman, and P. Chráska, The Influence of Cooling Rate on Phase Transformations in Al2O3, Proc. of 7th Metallographic Symposium, Part 1, J. Šujan, Ed., CSVTS Košice, Vysoké Tatry, Czechoslovakia, 1989, p 168–171Google Scholar
  8. 8.
    M. Kumagai and G.L. Messing, Enhanced Densification of Boehmite Sol-Gels by α-Alumina Seeding, J. Am. Ceram. Soc, Vol 67, 1984, C230–231CrossRefGoogle Scholar
  9. 9.
    Y. Suwa, R. Roy, and S. Komarneni, Lowering Crystallization Temperatures by Seeding in Structurally Diphasic Al2O3-MgO Xerogels, J. Am. Ceram. Soc, Vol 68,1985, C238CrossRefGoogle Scholar
  10. 10.
    G.L. Messing, M. Kumagai, R.A. Shellman, and J.L. McArdle, Seeded Transformation for Microstructural Control in Ceramics, The Science of Ceramic Chemical Processing, L.L. Hench and D.R. Ulrich, Ed., Wiley, 1986, p 259–271Google Scholar
  11. 11.
    G.C. Bye and G.T. Sympkin, Influence of Cr and Fe on the Formation of α-Al2O3 from γ-A12O3, J. Am. Ceram. Soc, Vol 57,1974, p 367–371CrossRefGoogle Scholar
  12. 12.
    T. Tushida, R. Furuichi, T. Ishii, and K. Itoh, The Effect of Cr3+ and Fe3+ Ion on the Transformation of Different Aluminum Hydroxides to α-Al2O3, Thermochim. acta, Vol 64,1983, p 337–353CrossRefGoogle Scholar
  13. 13.
    I.A. Bonder, V.B Glushkova, and P.A. Ceitlin, Study of Phase Changes in Al2O3,Neorg. Mater., Vol7, 1971,p 1367–1371Google Scholar
  14. 14.
    R. McPherson, On the Formation of Thermally Sprayed Alumina Coatings, J. Mater. Scl, Vol 15,1980, p 3141–3149CrossRefGoogle Scholar
  15. 15.
    R. McPherson, The Structure of Al2O3-Cr2O3 Powders Condensed from a Plasma, J. Mater. Sci., Vol 8,1973, p 859–862CrossRefGoogle Scholar
  16. 16.
    B.C. Lippens and J.H. DeBoer, Study of Phase Transformations During Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction, Acta Crystallogr., Vol 17, 1964, p 1312CrossRefGoogle Scholar
  17. 17.
    G. Ervin, Structural Interpretation of the Diaspore-Corundum and Boehmite-γ-Al2O3,4cto Crystallogr., Vol 5,1952, p 103–108CrossRefGoogle Scholar
  18. 18.
    A.M. Lejus, Metastable Phases Formation in Aluminum Hydroxides, Rev. Int. Hautes. Temp. Refract., Vol 1,1964, p 53–59Google Scholar
  19. 19.
    A. Nukui, H. Tagai, H. Morikawa, and S.I. Iwai, Structural Conformation and Solidification of Molten Alumina, J. Am. Ceram. Soc, Vol 59, 1976, p 534CrossRefGoogle Scholar
  20. 20.
    R. McPherson, Formation of Metastable Phases in Flame- and Plasma- Prepared Alumina, J. Mater. Sci., Vol 8,1973, p 851 -858CrossRefGoogle Scholar
  21. 21.
    F.B. Vurzel,V.A. Khmel’nik,V.F. Nazarov,and G.V. Kosoruchkin,Production of Thermally Deposited Aluminas, Phys. Chem. Mater. Treat., (Russia), Vol 3, 1988, p 86–91Google Scholar
  22. 22.
    H. Meyer, On the Application of Chromium Oxide-Containing Alumina to Flame Spraying, Ber. Deutsche Keramik. Ges., Vol 40,1963, p385Google Scholar
  23. 23.
    T.I. Barry, R.K. Bayliss, and L.A. Lay, Mixed Oxides Prepared with an Induction Plasma Torch, Part 1 Chromia/Alumina, J. Mater. Sci., Vol 3, 1968, p 229–238CrossRefGoogle Scholar
  24. 24.
    T.J. Davies, H.G. Emblem, C.S. Nwobodo, A.A. Ogwn, and V. Tsatzalou, Preparation and Properties of Some Alumina-Chrome Refractories, J. Mater. Sci., Vol 26,1991, p 1061CrossRefGoogle Scholar
  25. 25.
    S. Safai and H. Herman, Plasma-Sprayed Materials, Treat. Mater. Sci. Tech., Vol 20,1981, p 183–214Google Scholar
  26. 26.
    A. Krauth and H. Meyer, Modifications Produced by Chilling and Their Crystal Growth in the System Containing Zirconium Dioxide, Ber. Deutsche Keramik. Ges., Vol 42, 1965, p 61–72Google Scholar
  27. 27.
    J. Dubsky, V. Brozek, B. Kolman, and P. Chráska, Stabilization of α-AI2O3 by Chromia, Ceramics Adding the Value, Proc. of the Inter. Ceram. Conf. AUSTCERAM 92, Vol 2, M.J. Bannister, Ed., CSIRO, Australia, 1992, p 793–797Google Scholar
  28. 28.
    J. Dubsky, B. Kolman, V. Brozek, and P. Chráska, The Chemical Inhomogeneity of Al2O3-Cr2O3 Powders for Plasma Spraying, Proc. of 16th Symposium on Plasma Physics and Technology, Czech Technical University, Prague, Czechoslovakia, 1993, p 267–273Google Scholar
  29. 29.
    V. Costa, C. Pacheco de Silva, T. Puig, and A.M. Dias, Influence of H.I.P. and Laser Treatments on Ceramic Plasma Sprayed Coatings, Proc. 2nd Plasma-Technik-Symposium, Vol 1, Luzern, Switzerland, 1991, p 363–372Google Scholar
  30. 30.
    J. Dubsky, B. Kolman, and P. Chráska, Stability of Alpha Phase in Alumina-Chromia Plasma Sprayed Deposits After Annealing, 1994 Ther-mal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 779–782Google Scholar
  31. 31.
    R. McPherson, Formation of Metastable Monoclinic Rare Earth Sesquioxides from the Melt, J. Mater. Sci., Vol 18 (No. 5), 1983, p 1341- 1345CrossRefGoogle Scholar
  32. 32.
    V. Gourlaouen, G. Schnedecker, A. Grimaud, P. Fauchais, A.M. Lejus, and R. Collengues, Metastable Phase in Yttrium Oxide Plasma Spray Deposits and Their Effect on Coating Properties, 1994 Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 615–619Google Scholar
  33. 33.
    J. Ilavsky, K. Neufuss, and P. Chráska, Influence of Spraying Parameters on Properties of AI2O3 Deposits, Proc. of 5th Conference on Aluminum Oxide, Prague Institute of Chemical Technology, Prague, Czech Republic, 1990, p 65–70Google Scholar
  34. 34.
    J. Dubsky, B. Kolman, and P. Chráska, Effect of Spraying Parameters on Phase Composition of Deposits Prepared by the WSP Process, 1995 Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., ASM International, 1995, p 421–424Google Scholar
  35. 35.
    J. Dubsky, B. Kolman, and J. Forman, High-Temperature Stability of Plasma Sprayed AI2O3 Coatings, Proc. of 1st Czech National Thermal Conference, J. Musil, J. Kubícek, and S. Korcák, Ed., Technical University Brno, Czech Republic, 1994, p 150–153Google Scholar
  36. 36.
    W.D. Kingery, Introduction to Ceramics, J. Wiley, 1960, p 566Google Scholar
  37. 37.
    S.J. Geller, Crystal Structure of β-Ga2O3, J. Chem. Phys., Vol 33, 1960, p 676–681CrossRefGoogle Scholar

Copyright information

© ASM International 1997

Authors and Affiliations

  • P. Chráska
    • 1
  • J. Dubsky
    • 1
  • K. Neufuss
    • 1
  • J. Písacka
    • 1
  1. 1.Institute of Plasma PhysicsAcademy of SciencesPrague 8Czech Republic

Personalised recommendations