Skip to main content
Log in

High Velocity Air Fuel Spraying for Metal Additive Manufacturing - A Study on Copper

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Owing to its reflectivity, Copper manufacturing has always been challenging through laser-based additive manufacturing. In this study, we demonstrate additive/bulk manufacturing of copper using high velocity air fuel (HVAF) spray technology, an emerging variant in the thermal spray family. Rapid deposition of millimeter scale copper parts with good mechanical integrity and decent ductility, comparable to that of cold spray, has been shown feasible. The mechanical properties measured along different built directions showed no significance to be considered anisotropic. Electron backscattered diffraction analysis revealed the possibility of developing favorable bimodal grain distribution with a high volume fraction of ultrafine grains (>50%). However, the intersplat porosities and continuous pores were found to be detrimental despite the low overall porosity. HVAF technology demonstrates great potential and appears to be a promising process methodology for bulk/additive manufacturing of metals with a rapid production rate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.Q. Tran, A. Chinnappan, J.K.Y. Lee, N.H. Loc, L.T. Tran, G. Wang, V.V. Kumar, W.A.D.M. Jayathilaka, D. Ji, M. Doddamani, and S. Ramakrishna, 3D Printing of Highly Pure Copper, Metals, 2019, 9, p 756. https://doi.org/10.3390/met9070756

    Article  CAS  Google Scholar 

  2. M.R. Sriraman, S.S. Babu, and M. Short, Bonding Characteristics During Very High Power Ultrasonic Additive Manufacturing of Copper, Scr. Mater., 2010, 62, p 560-563. https://doi.org/10.1016/j.scriptamat.2009.12.040

    Article  CAS  Google Scholar 

  3. S.D. Jadhav, L.R. Goossens, Y. Kinds, B. Van Hooreweder, and K. Vanmeensel, Laser-Based Powder Bed Fusion Additive Manufacturing of Pure Copper, Addit. Manuf., 2021, 42, 101990. https://doi.org/10.1016/j.addma.2021.101990

    Article  CAS  Google Scholar 

  4. J. Tam, B. Yu, W. Li, D. Poirier, J.G. Legoux, J.D. Giallonardo, J. Howe, and U. Erb, The Effect of Annealing on Trapped Copper Oxides in Particle-Particle Interfaces of Cold-Sprayed Cu Coatings, Scr. Mater., 2022, 208, 114333. https://doi.org/10.1016/j.scriptamat.2021.114333

    Article  CAS  Google Scholar 

  5. Y. Bai and C.B. Williams, An Exploration of Binder Jetting of Copper, Rapid Prototyp. J., 2015, 21, p 177-185. https://doi.org/10.1108/RPJ-12-2014-0180

    Article  Google Scholar 

  6. Y. Bai, G. Wagner, and C.B. Williams, Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals, J. Manuf. Sci. Eng., 2017, 139, 081019. https://doi.org/10.1115/1.4036640

    Article  Google Scholar 

  7. A.Y. Kumar, J. Wang, Y. Bai, S.T. Huxtable, and C.B. Williams, Impacts of Process-Induced Porosity on Material Properties of Copper Made by Binder Jetting Additive Manufacturing, Mater. Des., 2019, 182, p 108001. https://doi.org/10.1016/j.matdes.2019.108001

    Article  CAS  Google Scholar 

  8. M. Liu, B.B. Wang, X.H. An, P. Xue, F.C. Liu, L.H. Wu, D.R. Ni, B.L. Xiao, and Z.Y. Ma, Friction Stir Additive Manufacturing Enabling Scale-up of Ultrafine-Grained Pure Copper with Superior Mechanical Properties, Mater. Sci. Eng. A, 2022, 857, 144088. https://doi.org/10.1016/j.msea.2022.144088

    Article  CAS  Google Scholar 

  9. R. Joey Griffiths, D. Garcia, J. Song, V.K. Vasudevan, M.A. Steiner, W. Cai, and H.Z. Yu, Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages, Mater., 2021, 15, p 100967-101016. https://doi.org/10.1016/j.mtla.2020.100967

    Article  CAS  Google Scholar 

  10. Y. Zou, Cold Spray Additive Manufacturing: Microstructure Evolution and Bonding Features, Acc. Mater. Res., 2021, 2, p 1071-1081. https://doi.org/10.1021/accountsmr.1c00138

    Article  CAS  Google Scholar 

  11. O. Kovarik, J. Siegl, J. Cizek, T. Chraska, and J. Kondas, Fracture Toughness of Cold Sprayed Pure Metals, J. Therm. Spray Tech., 2020, 29, p 147-157. https://doi.org/10.1007/s11666-019-00956-z

    Article  CAS  Google Scholar 

  12. N.M. Chavan, P. Pant, G. Sundararajan, and P. Suresh Babu, Post Treatment of Cold Sprayed Coatings Using High-Energy Infrared Radiation: First Comprehensive Study on Structure-Property Correlation, Surf. Coat. Technol., 2022, 448, p 128902. https://doi.org/10.1016/j.surfcoat.2022.128902

    Article  CAS  Google Scholar 

  13. K. Yang, W. Li, X. Guo, X. Yang, and Y. Xu, Characterizations and Anisotropy of Cold-Spraying Additive-Manufactured Copper Bulk, J. Mater. Sci. Technol., 2018, 34, p 1570-1579. https://doi.org/10.1016/j.jmst.2018.01.002

    Article  CAS  Google Scholar 

  14. R.M. Molak, H. Araki, M. Watanabe, H. Katanoda, N. Ohno, and S. Kuroda, Effects of Spray Parameters and Post-spray Heat Treatment on Microstructure and Mechanical Properties of Warm-Sprayed Ti-6Al-4V Coatings, J. Therm. Spray Tech., 2017, 26, p 627-647. https://doi.org/10.1007/s11666-016-0494-5

    Article  CAS  Google Scholar 

  15. P. Bansal, P.H. Shipway, and S.B. Leen, Effect of Particle Impact on Residual Stress Development in HVOF Sprayed Coatings, J. Therm. Spray Tech., 2006, 15, p 570-575. https://doi.org/10.1361/105996306X146703

    Article  CAS  Google Scholar 

  16. B. Rajasekaran, G. Mauer, R. Vassen, A. Röttger, S. Weber, and W. Theisen, Coating of High-Alloyed, Ledeburitic Cold Work Tool Steel Applied by HVOF Spraying, J. Therm. Spray Tech., 2010, 19, p 642–649. https://doi.org/10.1007/s11666-009-9456-5

    Article  CAS  Google Scholar 

  17. A. Röttger, S.L. Weber, W. Theisen, B. Rajasekaran, and R. Vaßen, HVOF Spraying of Fe-Based MMC Coatings with in situ Formation of Hard Particles by Hot Isostatic Pressing, J. Therm. Spray Tech., 2012, 21, p 344–354. https://doi.org/10.1007/s11666-012-9736-3

    Article  CAS  Google Scholar 

  18. H. Gassot, T. Junquera, V. Ji, M. Jeandin, V. Guipont, C. Coddet, C. Verdy, and L. Grandsire, Comparative Study of Mechanical Properties and Residual Stress Distributions of Copper Coatings Obtained by Different Thermal Spray Processes, Surf. Eng., 2001, 17, p 317–322. https://doi.org/10.1179/026708401101517944

    Article  CAS  Google Scholar 

  19. R.J. Alroy, R. Pandey, M. Kamaraj, and G. Sivakumar, Role of Process Parameters on Microstructure, Mechanical Properties and Erosion Performance of HVAF Sprayed Cr3C2-NiCr Coatings, Surf. Coat. Technol., 2022, 449, 128941. https://doi.org/10.1016/j.surfcoat.2022.128941

    Article  CAS  Google Scholar 

  20. M.R. Rokni, C.A. Widener, and G.A. Crawford, Microstructural Evolution of 7075 Al Gas Atomized Powder and High-Pressure Cold Sprayed Deposition, Surf. Coat. Technol., 2014, 251, p 254–263. https://doi.org/10.1016/j.surfcoat.2014.04.035

    Article  CAS  Google Scholar 

  21. M. Xiao, X. Liu, S. Zeng, Z. Zheng, G. Wang, Z. Qiu, M. Liu, and D. Zeng, Effects of Particle Size on the Microstructure and Mechanical Properties of HVAF-Sprayed Al-Based Quasicrystalline Coatings, J. Therm. Spray Tech., 2021, 30, p 1380–1392. https://doi.org/10.1007/s11666-021-01202-1

    Article  CAS  Google Scholar 

  22. M. Watanabe, C. Brauns, M. Komatsu, S. Kuroda, F. Gärtner, T. Klassen, and H. Katanoda, Effect of Nitrogen Flow Rate on Microstructures and Mechanical Properties of Metallic Coatings by Warm Spray Deposition, Surf. Coat. Technol., 2013, 232, p 587–599. https://doi.org/10.1016/j.surfcoat.2013.06.034

    Article  CAS  Google Scholar 

  23. S. Pathak and G.C. Saha, Development of Sustainable Cold Spray Coatings and 3D Additive Manufacturing Components for Repair/Manufacturing Applications: A Critical Review, Coatings, 2017, 7, p 122. https://doi.org/10.3390/coatings7080122

    Article  CAS  Google Scholar 

  24. B. Rajasekaran, G. Mauer, R. Vaßen, A. Röttger, S. Weber, and W. Theisen, Thick Tool Steel Coatings Using HVOF Spraying for Wear Resistance Applications, Surf. Coat. Technol., 2010, 204, p 3858–3863. https://doi.org/10.1016/j.surfcoat.2010.09.041

    Article  CAS  Google Scholar 

  25. B. Rajasekaran, G. Mauer, R. Vaßen, A. Röttger, S. Weber, and W. Theisen, Development of Cold Work Tool Steel Based-MMC Coating Using HVOF Spraying and Its HIP Densification Behaviour, Surf. Coat. Technol., 2010, 205, p 2449–2454. https://doi.org/10.1016/j.surfcoat.2010.05.001

    Article  CAS  Google Scholar 

  26. J. Kawakita, K. Isoyama, S. Kuroda, and H. Yumoto, Effects of Deformability of HVOF Sprayed Copper Particles on the Density of Resultant Coatings, Surf. Coat. Technol., 2006, 200, p 4414–4423. https://doi.org/10.1016/j.surfcoat.2005.02.180

    Article  CAS  Google Scholar 

  27. X. Yuan, H. Wang, G. Hou, and B. Zha, Numerical Modeling of a Low Temperature High Velocity Air Fuel Spraying Process with Injection of Liquid and Metal Particles, J. Therm. Spray Tech., 2006, 15, p 413–421. https://doi.org/10.1361/105996306X124428

    Article  CAS  Google Scholar 

  28. B. Rajasekaran, G. Mauer, and R. Vaßen, Enhanced Characteristics of HVOF-sprayed MCrAlY Bond Coats for TBC Applications, J. Therm. Spray Tech., 2011, 20, p 1209–1216. https://doi.org/10.1007/s11666-011-9668-3

    Article  CAS  Google Scholar 

  29. G. Prashar and H. Vasudev, A Comprehensive Review on Sustainable Cold Spray Additive Manufacturing: State of the art, Challenges and Future Challenges, J. Clean. Prod., 2021, 310, 127606. https://doi.org/10.1016/j.jclepro.2021.127606

    Article  Google Scholar 

  30. T. Goyal, R.S. Walia, and T.S. Sidhu, Surface Roughness Optimization of Cold-Sprayed Coatings Using Taguchi Method, Int. J. Adv. Manuf. Technol., 2012, 60, p 611–623. https://doi.org/10.1007/s00170-011-3642-6

    Article  Google Scholar 

  31. C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064–10070. https://doi.org/10.1063/1.1573740

    Article  CAS  Google Scholar 

  32. S. Yin, R. Jenkins, X. Yan, and R. Lupoi, Microstructure and Mechanical Anisotropy of Additively Manufactured Cold Spray Copper Deposits, Mater. Sci. Eng. A, 2018, 734, p 67–76. https://doi.org/10.1016/j.msea.2018.07.096

    Article  CAS  Google Scholar 

  33. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying–A Materials Perspective, Acta Mater., 2016, 116, p 382–407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  CAS  Google Scholar 

  34. N. Hutasoit, R.A.R. Rashid, S. Palanisamy, and A. Duguid, Effect of Build Orientation and Post-Build Heat Treatment on the Mechanical Properties of Cold Spray Additively Manufactured Copper Parts, Int. J. Adv. Manuf. Technol., 2020, 110, p 2341–2357. https://doi.org/10.1007/s00170-020-06010-5

    Article  Google Scholar 

  35. W. Li, D. Wu, K. Hu, Y. Xu, X. Yang, and Y. Zhang, A Comparative Study on the Employment of Heat Treatment, Electric Pulse Processing and Friction Stir Processing to Enhance Mechanical Properties of Cold-Spray-Additive-Manufactured Copper, Surf. Coat. Technol., 2021, 409, 126887. https://doi.org/10.1016/j.surfcoat.2021.126887

    Article  CAS  Google Scholar 

  36. Y.K. Kim and K.A. Lee, Effect of Carrier Gas Species on the Microstructure and Compressive Deformation Behaviors of Ultra-Strong Pure Copper Manufactured by Cold Spray Additive Manufacturing, J. Mater. Sci. Technol., 2022, 97, p 264–271. https://doi.org/10.1016/j.jmst.2021.04.062

    Article  CAS  Google Scholar 

  37. C. Chen, Y. Xie, S. Yin, W. Li, X. Luo, X. Xie, R. Zhao, C. Deng, J. Wang, H. Liao, M. Liu, and Z. Ren, Ductile and High Strength Cu Fabricated by Solid-State Cold Spray Additive Manufacturing, J. Mater. Sci. Technol., 2023, 134, p 234–243. https://doi.org/10.1016/j.jmst.2022.07.003

    Article  CAS  Google Scholar 

  38. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma, Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1–16 Passes, Acta Mater., 2004, 52, p 4819–4832. https://doi.org/10.1016/j.actamat.2004.06.040

    Article  CAS  Google Scholar 

  39. Z. Liu, H. Wang, M.J.R. Haché, X. Chu, E. Irissou, and Y. Zou, Prediction of Heterogeneous Microstructural Evolution in Cold Sprayed Copper Coatings Using Local Zener-Hollomon Parameter and Strain, Acta Mater., 2020, 193, p 191–201. https://doi.org/10.1016/j.actamat.2020.04.041

    Article  CAS  Google Scholar 

  40. V. Nikolić, J. Riesch, and R. Pippan, The Effect of Heat Treatments on Pure and Potassium Doped Drawn Tungsten Wires: Part I–Microstructural Characterization, Mater. Sci. Eng. A, 2018, 737, p 422–433. https://doi.org/10.1016/j.msea.2018.09.027

    Article  CAS  Google Scholar 

  41. F. Cemin, D. Lundin, C. Furgeaud, A. Michel, G. Amiard, T. Minea, and G. Abadias, Epitaxial Growth of Cu(001) Thin Films onto Si(001) Using a Single-Step HiPIMS Process, Sci. Rep., 2017, 7, p 1655. https://doi.org/10.1038/s41598-017-01755-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R. Singh, J. Kondás, C. Bauer, J. Cizek, J. Medricky, S. Csaki, J. Čupera, R. Procházka, D. Melzer, and P. Konopík, Bulk-Like Ductility of Cold Spray Additively Manufactured Copper in the As-Sprayed State, Addit. Manuf. Lett., 2022, 3, 100052. https://doi.org/10.1016/j.addlet.2022.100052

    Article  Google Scholar 

  43. S. Yin, W. Zhu, Q. Wang, Z. Chang, Z. Ren, S. Yang, G. Han, and X. Wang, HVAF Deposition Mechanism of γ-TiAl-Based Coating Containing β Phase, Surf. Coat. Technol., 2021, 409, p 126894. https://doi.org/10.1016/j.surfcoat.2021.126894

    Article  CAS  Google Scholar 

  44. K. Jiang, H. Nakano, S. Oue, T. Morikawa, Z. Li, and W. Tian, Interrupted In Situ EBSD Study of Texture Evolution and Mechanism of Surface Grains in Electroformed Ni After Annealing with an Initially Duplex <100> + <111> Fiber Texture During Uniaxial Tensile Deformation, Mater Charact, 2018, 141, p 238–247. https://doi.org/10.1016/j.matchar.2018.05.004

    Article  CAS  Google Scholar 

  45. T. Liu, J.D. Leazer, H. Bannister, W.A. Story, B.D. Bouffard, and L.N. Brewer, Influence of Alloy Additions on the Microstructure, Texture, and Hardness of Low-Pressure Cold-Sprayed Al-Cu Alloys, J. Therm. Spray Tech., 2019, 28, p 904–916. https://doi.org/10.1007/s11666-019-00860-6

    Article  CAS  Google Scholar 

  46. X. Liu, H. Wang, K. Kaufmann, and K. Vecchio, Directed Energy Deposition of Pure Copper Using Blue Laser, J. Manuf. Process., 2023, 85, p 314–322. https://doi.org/10.1016/j.jmapro.2022.11.064

    Article  Google Scholar 

  47. Q. Jiang, P. Zhang, Z. Yu, H. Shi, D. Wu, H. Yan, X. Ye, Q. Lu, and Y. Tian, A Review on Additive Manufacturing of Pure Copper, Coatings, 2021, 11, p 740. https://doi.org/10.3390/coatings11060740

    Article  CAS  Google Scholar 

  48. P. SudharshanPhani, D. SrinivasaRao, S.V. Joshi, and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Tech., 2007, 16, p 425–434. https://doi.org/10.1007/s11666-007-9048-1

    Article  CAS  Google Scholar 

  49. T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 4947–4960. https://doi.org/10.1016/j.surfcoat.2005.05.011

    Article  CAS  Google Scholar 

  50. A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98, p 14–31. https://doi.org/10.1016/j.ijfatigue.2017.01.001

    Article  Google Scholar 

  51. K. Yang, W. Li, X. Yang, and Y. Xu, Anisotropic Response of Cold Sprayed Copper Deposits, Surf. Coat. Technol., 2018, 335, p 219–227. https://doi.org/10.1016/j.surfcoat.2017.12.043

    Article  CAS  Google Scholar 

  52. X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardi, and V.K. Champagne, Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing, Addit. Manuf., 2015, 8, p 149–162. https://doi.org/10.1016/j.addma.2015.03.006

    Article  CAS  Google Scholar 

  53. X. Gao, C. Li, X. Han, X. Chen, and X. Zhao, Numerical Simulation and Parameter Sensitivity Analysis of Multi-particle Deposition Behavior in HVAF Spraying, Surf. Coat. Technol., 2022, 441, 128569. https://doi.org/10.1016/j.surfcoat.2022.128569

    Article  CAS  Google Scholar 

  54. F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Koçak, Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 6770–6782. https://doi.org/10.1016/j.surfcoat.2005.10.007

    Article  CAS  Google Scholar 

  55. M.A. Lodes, R. Guschlbauer, and C. Körner, Process Development for the Manufacturing of 99.94% Pure Copper via Selective Electron Beam Melting, Mater. Lett., 2015, 143, p 298–301. https://doi.org/10.1016/j.matlet.2014.12.105

    Article  CAS  Google Scholar 

  56. J. Huang, X. Yan, C. Chang, Y. Xie, W. Ma, R. Huang, R. Zhao, S. Li, M. Liu, and H. Liao, Pure Copper Components Fabricated by Cold Spray (CS) and Selective Laser Melting (SLM) Technology, Surf. Coat. Technol., 2020, 395, 125936. https://doi.org/10.1016/j.surfcoat.2020.125936

    Article  CAS  Google Scholar 

  57. P. Jakupi, P.G. Keech, I. Barker, S. Ramamurthy, R.L. Jacklin, D.W. Shoesmith, and D.E. Moser, Characterization of Commercially Cold Sprayed Copper Coatings and Determination of the Effects of Impacting Copper Powder Velocities, J. Nucl. Mater., 2015, 466, p 1–11. https://doi.org/10.1016/j.jnucmat.2015.07.001

    Article  CAS  Google Scholar 

  58. F.J. Wei, B.Y. Chou, K.Z. Fung, and S.Y. Tsai, Thermomechanical Properties of Cold-Sprayed Copper Coatings from Differently Fabricated Powders, Surf. Coat. Technol., 2022, 434, 128128. https://doi.org/10.1016/j.surfcoat.2022.128128

    Article  CAS  Google Scholar 

  59. D.L. Guo, D. MacDonald, L. Zhao, and B. Jodoin, Cold Spray MCrAlY Coatings on Single-Crystal Superalloy Using Nitrogen: Properties and Economics, J. Therm. Spray Tech., 2020, 29, p 1628–1642. https://doi.org/10.1007/s11666-020-01058-x

    Article  CAS  Google Scholar 

  60. G. Mauer, K.H. Rauwald, Y.J. Sohn, and R. Vaßen, The Potential of High-Velocity Air-Fuel Spraying (HVAF) to Manufacture Bond Coats for Thermal Barrier Coating Systems, J. Therm. Spray Tech., 2023 https://doi.org/10.1007/s11666-023-01659-2

    Article  Google Scholar 

  61. S. Joshi and P. Nylen, Advanced Coatings by Thermal Spray Processes, Technologies, 2019, 7, p 79. https://doi.org/10.3390/technologies7040079

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Central Research Facility (CRF, NITK) and the Ministry of Education (MoE) India for providing the HVAF and other characterization facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rajasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreerag, M.P., Vijay, V.A., Varalakshmi, S. et al. High Velocity Air Fuel Spraying for Metal Additive Manufacturing - A Study on Copper. J Therm Spray Tech (2024). https://doi.org/10.1007/s11666-024-01759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11666-024-01759-7

Keywords

Navigation