Skip to main content
Log in

Machine Learning-Based Diagnosis of Thermal Barrier Coating Process Quality

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Based on machine learning algorithms, a method is proposed for quality diagnosis of atmospheric plasma spraying (APS) processes used in thermal barrier coatings with determined coating materials and processes, aiming to swiftly evaluate the quality of APS coatings. First, the three-dimensional morphology of the coating is reconstructed through surface interpolation fitting, employing one-dimensional morphology standards and abnormal training set samples of the plasma-sprayed thermal barrier coating. This algorithm enables the extraction of cross section data of the coating at any angle. The mapping relationship between the characteristic parameters of the Gaussian peak and the process and coating characteristics is thoroughly analyzed, and the 12-dimensional characteristic parameters are utilized to effectively represent the one-dimensional morphology samples. Subsequently, principal component analysis (PCA) and K-nearest neighbor (KNN) algorithms are employed for accurate prediction and classification of the process quality of coating samples. Additionally, an exploratory factor analysis (EFA) model is established to comprehensively depict the relationship between plasma spraying process parameters, the process, and the three-dimensional morphology of the coating. The experimental results show that the machine learning algorithm has high accuracy in quality diagnosis, and its robustness is further verified by K-fold cross-validation. When combined with the EFA model, the proposed method facilitates rapid feedback on process quality, enabling real-time evaluation. Overall, this innovative approach presents a novel solution for the quality diagnosis of atmospheric plasma spraying processes. The incorporation of machine learning techniques and the establishment of the EFA model contribute to enhanced efficiency and accuracy in the evaluation process, paving the way for advancements in thermal barrier coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Ni, K. Shi, S. Xue, J. Zhao, S. Liu, H. Liu, and Z. Li, Development and Outlook of Ceramic Materials for Thermal Barrier Coatings in Aircraft Engines, Mater. Rep., 2021, 35(S1), p 163-168.

    Google Scholar 

  2. P.G. Lashmi, P.V. Ananthapadmanabhan, G. Unnikrishnan et al., Present Status and Future Prospects of Plasma Sprayed Multilayered Thermal Barrier Coating Systems, J. Eur. Ceram. Soc., 2020, 40(8), p 2731-2745.

    Article  CAS  Google Scholar 

  3. M. García-Martínez, J.C. del Hoyo Gordillo, M.P. Valles González, A. Pastor Muro, and B. González Caballero, Failure Study of an Aircraft Engine High Pressure Turbine (HPT) First Stage Blade, Eng. Fail. Anal., 2023, 149, p 107251.

    Article  Google Scholar 

  4. C. Zhu, A. Javed, P. Li et al., A Study of the Microstructure and Oxidation Behavior of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) Thermal Barrier Coatings, Surf. Coat. Technol., 2012, 212, p 214-222.

    Article  CAS  Google Scholar 

  5. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284.

    Article  CAS  PubMed  Google Scholar 

  6. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(5), p 505-553.

    Article  Google Scholar 

  7. D.R. Clarke and, C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33(1), p 383-417.

    Article  CAS  Google Scholar 

  8. J. Sun et al., Thermal Spray Science and Technology, Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  9. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26, p 992-1010.

    Article  CAS  Google Scholar 

  10. L.M. Chen and Q. Li, Current Status and Development of Plasma Spraying Technology, Heat Treat. Technol. Equip., 2006, 27(1), p 1-5.

    Google Scholar 

  11. P. Fauchais, G. Montavon, M. Vardelle, and J. Cedelle, Developments in Direct Current Plasma Spraying, Surf. Coat. Technol., 2006, 201(5), p 1908-1921.

    Article  CAS  Google Scholar 

  12. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37(9), p R86.

    Article  CAS  Google Scholar 

  13. Z. Wang, S. Huang, J. Xue et al., Current Status and Progress of Plasma Spraying Equipment, China Surf. Eng., 2000, 4, p 5-7.

    Google Scholar 

  14. D. Zhang, L. Zheng, X. Hu, and H. Zhang, Numerical Studies of Arc Plasma Generation in Single Cathode and Three-Cathode Plasma Torch and Its Impact on Plasma Spraying, Int. J. Heat Mass Transf., 2016, 98, p 508-522.

    Article  Google Scholar 

  15. X. Ye, Z. Li, and Y. Zhu, Research on Plasma Spraying Particle Temperature Based on CCD Image Processing Technology, New Technol. New Process, 2005, 9, p 59-60.

    Google Scholar 

  16. M. Lorenzo-Bañuelos, A. Díaz, D. Rodríguez, et al., Influence of Atmospheric Plasma Spray Parameters (APS) on the Mechanical Properties of Ni-Al Coatings on Aluminum Alloy Substrate, Metals, 2021, 11, p 612.

    Article  Google Scholar 

  17. J. Liu, R. Bolot, and S. Costil, Residual Stresses and Final Deformation of an Alumina Coating: Modeling and Measurement, Surf. Coat. Technol., 2015, 268, p 241-246.

    Article  CAS  Google Scholar 

  18. M. Liu, H. Wu, Z. Yu et al., Description and Prediction of Multi-layer Profile in Cold Spray Using Artificial Neural Networks, J. Therm. Spray Technol., 2021, 30, p 1453-1463.

    Article  CAS  Google Scholar 

  19. T. Van Hoof, G. Fradet, F. Pichot et al., Simulation of Thermal Spray Coating on 3D Objects: Numerical Scheme and Aeronautic Test Case, J. Therm. Spray Technol., 2019, 28, p 1867-1880.

    Article  Google Scholar 

  20. W. Hongjian, X. Xie, M. Liu, C. Chen, H. Liao, Y. Zhang, and S. Deng, A New Approach to Simulate Coating Thickness in Cold Spray, Surf. Coat. Technol., 2020, 382, p 125151.

    Article  Google Scholar 

  21. F.I. Trifa, G. Montavon, C. Coddet, P. Nardin, and M. Abrudeanu, Geometrical Features of Plasma-Sprayed Deposits and Their Characterization Methods, Mater. Charact., 2005, 54(2), p 157-175.

    Article  CAS  Google Scholar 

  22. F.I. Trifa, G. Montavon, and C. Coddet, On the Relationships Between the Geometric Processing Parameters of APS and the Al2O3–TiO2 Deposit Shapes, Surf. Coat. Technol., 2005, 195(1), p 54-69.

    Article  CAS  Google Scholar 

  23. G. Mauer and C. Moreau, Process Diagnostics and Control in Thermal Spray, J. Therm. Spray Tech., 2022, 31, p 818-828.

    Article  Google Scholar 

  24. K. Bobzin, W. Wietheger, H. Heinemann et al., Prediction of Particle Properties in Plasma Spraying Based on Machine Learning, J Therm. Spray Technol., 2021, 30, p 1751-1764.

    Article  Google Scholar 

  25. J. Zhu, X. Wang, L. Kou, L. Zheng, and H. Zhang, Prediction of Control Parameters Corresponding to In-Flight Particles in Atmospheric Plasma Spray Employing Convolutional Neural Networks, Surf. Coat. Technol., 2020, 394, p 125862.

    Article  CAS  Google Scholar 

  26. M. Liu, Y. Zexin, Y. Zhang, W. Hongjian, H. Liao, and S. Deng, Prediction and Analysis of High Velocity Oxy Fuel (HVOF) Sprayed Coating Using Artificial Neural Network, Surf. Coat. Technol., 2019, 378, p 124988.

    Article  CAS  Google Scholar 

  27. M. Liu, Z. Yu, H. Wu et al., Implementation of Artificial Neural Networks for Forecasting the HVOF Spray Process and HVOF Sprayed Coatings, J. Therm. Spray Technol., 2021, 30, p 1329-1343.

    Article  CAS  Google Scholar 

  28. S.K.P. Kolluru, S.A. Kalvakolanu, S.G. Chinthapanti, and S.T. Palakurthy, Machine Learning Approach to Model and Predict the Shear Strength of TZM-Graphite Joint Bonded by Spark Plasma Sintering, Mater. Today Proc., 2023, 92, p 1482–1492.

    Article  CAS  Google Scholar 

  29. Y. Zhao, F. Peyraut, M.P. Planche et al., Experiments, Statistical Analysis, and Modeling to Evaluate the Porosity Influence in SPS Coatings, J. Therm. Spray Technol., 2019, 28, p 76-86.

    Article  CAS  Google Scholar 

  30. Z. Wang, S. Cai, W. Chen et al., Analysis of Critical Velocity of Cold Spray Based on Machine Learning Method with Feature Selection, J. Therm. Spray Technol., 2021, 30, p 1213-1225.

    Article  Google Scholar 

  31. H. Canales, I.G. Cano, and S. Dosta, Window of Deposition Description and Prediction of Deposition Efficiency Via Machine Learning Techniques in Cold Spraying, Surf. Coat. Technol., 2020, 401, p 126143.

    Article  CAS  Google Scholar 

  32. U.M.R. Paturi, N.S. Reddy, S. Cheruku, S.K.R. Narala, K.K. Cho, and M.M. Reddy, Estimation of Coating Thickness in Electrostatic Spray Deposition by Machine Learning and Response Surface Methodology, Surf. Coat. Technol., 2021, 422, p 127559.

    Article  CAS  Google Scholar 

  33. G. Mauer, R. Vaßen, D. Stöver et al., Improving Powder Injection in Plasma Spraying by Optical Diagnostics of the Plasma and Particle Characterization, J. Therm. Spray Technol., 2011, 20, p 3-11.

    Article  Google Scholar 

  34. I. Ulaq, D.M. Khan, M. Hamraz, N. Iqbal, A. Ali, and Z. Khan, Optimal K-NEAREST Neighbours Based Ensemble for Classification and Feature Selection in Chemometrics Data, Chemometr. Intell. Lab. Syst., 2023, 240, p 104882.

    Article  Google Scholar 

  35. A. Liang, H. Yunpeng, and G. Li, The Impact of Improved PCA Method Based on Anomaly Detection on Chiller Sensor Fault Detection, Int. J. Refrig., 2023, 155, p 184-194.

    Article  Google Scholar 

  36. J. Li, F. Gao, S. Lin, M. Guo, Y. Li, H. Liu, S. Qin, and Q.Y. Wen, Quantum k-Fold Cross-Validation for Nearest Neighbor Classification Algorithm, Phys. A: Stat. Mech. Appl., 2023, 611, p 128435.

    Article  Google Scholar 

  37. H. Li, Statistical Learning Methods, Tsinghua University Press, Beijing, 2012.

    Google Scholar 

  38. B. Ghojogh, F. Karray, and M. Crowley, Eigenvalue and Generalized Eigenvalue Problems: Tutorial. arXiv preprint arXiv:1903.11240.

  39. F.L. Gewers, G.R. Ferreira, H.F.D. Arruda, F.N. Silva, C.H. Comin, D.R. Amancio, and L.D.F. Costa, Principal Component Analysis: A Natural Approach to Data Exploration, ACM Comput. Surv., 2021, 54(4), p 1-34.

    Article  Google Scholar 

  40. S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, Learning k for knn Classification, ACM Trans. Intell. Syst. Technol., 2017, 8(3), p 1-19.

    Google Scholar 

  41. M.L. Zhang and Z.H. Zhou, ML-KNN: A Lazy Learning Approach to Multi-Label Learning, Pattern Recogn., 2007, 40(7), p 2038-2048.

    Article  Google Scholar 

  42. M. Bansal, A. Goyal, and A. Choudhary, A Comparative Analysis of K-Nearest Neighbor Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning, Decis. Anal. J., 2022, 3, p 100071.

    Article  Google Scholar 

  43. M.C. Howard, A Review of Exploratory Factor Analysis Decisions and Overview of Current Practices: What We Are Doing and How Can We Improve, Int. J. Hum. Comput. Interact., 2016, 32(1), p 51-62.

    Article  Google Scholar 

  44. H. Treiblmaier and P. Filzmoser, Exploratory Factor Analysis Revisited: How Robust Methods Support the Detection of Hidden Multivariate Data Structures in IS Research, Inf. Manag., 2010, 47(4), p 197-207.

    Article  Google Scholar 

  45. S.E. Kim, I.W. Seo, and S.Y. Choi, Assessment of Water Quality Variation of a Monitoring Network Using Exploratory Factor Analysis and Empirical Orthogonal Function, Environ. Modell. Softw., 2017, 94, p 21-35.

    Article  Google Scholar 

  46. L.B. Iantovics, C. Rotar, and F. Morar, Survey on Establishing the Optimal Number of Factors in Exploratory Factor Analysis Applied to Data Mining, Wiley Interdiscip. Rev. Data Mining Knowl. Discov., 2019, 9(2), p e1294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., He, Q. & Huang, Z. Machine Learning-Based Diagnosis of Thermal Barrier Coating Process Quality. J Therm Spray Tech (2024). https://doi.org/10.1007/s11666-024-01747-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11666-024-01747-x

Keywords

Navigation